SF2729 Groups and Rings
 Final exam

Wednesday, March 19, 2014

Examiner Tilman Bauer

Allowed aids none

Time 14:00-19:00

Present your solutions in such a way that the arguments and calculations are easy to follow. Provide detailed arguments to your answers. An answer without explanation will give few or no points.

Each problem is worth 6 points, for a total of 36 points. Your end score will be the better of the exam score and the weighted average

$$
0.75 \text { (exam score) }+0.25 \text { (homework score) }
$$

It is thus important that you do all problems even if you scored high on the homework. Good luck!

Problem 1

Show for each integer a that $35 \mid a^{13}-a$.

Problem 2

Let G be a group of order $340=2^{2} \cdot 5 \cdot 17$.

1. Show that G has normal cyclic subgroups of orders 5 and 17. (2p)
2. Show that G has a cyclic subgroup N of order $85=5 \cdot 17$. (3p)
3. Show that N is normal. (1p)

Problem 3

Let G be a group such that all non-identity elements are conjugate. Show that the order of G is 1,2 , or infinite.

Problem 4

Let R be a commutative, unital ring and $I \unlhd R$ an ideal. Define

$$
\sqrt{I}=\left\{r \in R \mid r^{n} \in I \text { for some } n \geq 1\right\} .
$$

Show that \sqrt{I} is an ideal.

Problem 5

Factor the polynomial $p(x)=x^{4}+x+1$ into indecomposable factors in the following rings:

1. $\mathbf{F}_{2}[x]$,
2. $\mathbf{F}_{3}[x]$,
3. $\mathbf{Q}[x]$.

In each case, argue carefully why the factors you give are indeed indecomposable.

Problem 6

Let M be a finitely generated module over an integral domain R and let $\left\{x_{1}, \ldots, x_{n}\right\} \subseteq M$ be a maximal set of linearly independent elements and $N=\left\langle x_{1}, \ldots, x_{n}\right\rangle$ the submodule of M generated by this set. Show that M / N is a torsion module.

