## 1. CHAIN COMPLEXES

Definition. A sequence of abelian groups

$$
\ldots C_{-2}, C_{-1}, C_{0}, C_{1}, \ldots
$$

with homomorphisms $\partial_{i}: C_{i+1} \rightarrow C_{i}$ is called a (homological) chain complex if $\partial_{i-1} \circ \partial_{i}=0$ for all $i \in \mathbf{Z}$.

A cohomological chain complex is almost the same thing, but with reversed grading: a sequence of abelian groups

$$
\ldots C^{-2}, C^{-1}, C^{0}, C^{1}, \ldots
$$

together with homomorphisms $d^{i}: C^{i-1} \rightarrow C^{i}$ such that $d^{i} \circ d^{i-1}=0$ for all $i \in \mathbf{Z}$.
We will concentrate on homological chain complexes; all results hold analogously for cohomological chain complexes.

A chain complex (or just a sequence of abelian groups with homomorphisms) is called bounded below (bounded above) if $C_{i}=0$ for $i \ll 0$ (resp. $i \gg 0$ ). It is called non-negatively graded (non-positively graded) if $C_{i}=0$ for $i<0$ (resp. $i>0)$.

Definition. We call the subgroup $Z_{i}\left(C_{\bullet}\right)=\operatorname{ker}\left(\partial_{i-1}: C_{i} \rightarrow C_{i-1}\right)<C_{i}$ the subgroup of $i$-cycles and the subgroup $B_{i}\left(C_{\bullet}\right)=\operatorname{im}\left(\partial_{i}: C_{i+1} \rightarrow C_{i}\right)<C_{i}$ the subgroup of $i$-boundaries.

Lemma 1.1. For any chain complex $C_{\bullet}, B_{i}\left(C_{\bullet}\right)$ is a subgroup of $Z_{i}\left(C_{\bullet}\right)$.
Definition. The $i$ th homology group of a chain complex $C_{\bullet}$ is defined as the quotient group

$$
H_{i}\left(C_{\bullet}\right)=Z_{i}\left(C_{\bullet}\right) / B_{i}\left(C_{\bullet}\right) .
$$

If $Z_{n}=B_{n}$ for all $n$ (and thus $H_{n}=0$ ), we call $C_{\bullet}$ exact or acyclic. An exact chain complex is more usually called exact sequence. An exact sequence of the form

$$
0 \rightarrow A^{\prime} \rightarrow A \rightarrow A^{\prime \prime} \rightarrow 0
$$

is often called a short exact sequence.
Lemma 1.2. Let $A, B, C$ be abelian groups and $f: A \rightarrow B$ and $g: B \rightarrow C$ homomorphisms.
(1) $0 \rightarrow A \xrightarrow{f} B$ is exact iff $f$ is injective.
(2) $A \stackrel{f}{\rightarrow} B \rightarrow 0$ is exact iff $f$ is surjective.
(3) $0 \rightarrow A \xrightarrow{f} B \rightarrow 0$ is exact iff $f$ is an isomorphism.
(4) $0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0$ is exact iff $f$ is injective, $g$ is surjective, and $\operatorname{ker} g=\operatorname{im} f$.

Definition. Let $A_{\bullet}, B_{\bullet}$ be sequences of abelian groups and homomorphisms (or chain complexes). A map of sequences (or map of chain complexes) is a commutative diagram


Lemma 1.3. A map of chain complexes $f: C_{\bullet} \rightarrow D_{\bullet}$ induces maps

$$
\begin{array}{rll}
Z(f): & Z_{n}\left(C_{\bullet}\right) \rightarrow Z_{n}\left(D_{\bullet}\right) & \text { of } n \text {-cycles, } \\
B(f): & B_{n}\left(C_{\bullet}\right) \rightarrow B_{n}\left(D_{\bullet}\right) & \text { of } n \text {-boundaries, and } \\
H_{n}(f)=f_{*}: & H_{n}\left(C_{\bullet}\right) \rightarrow H_{n}\left(D_{\bullet}\right) & \text { on homology. }
\end{array}
$$

Lemma 1.4 (Five-lemma). Let

be a commutative diagram of abelian groups with exact rows. Then:
(1) if $f_{2}, f_{4}$ are surjective and $f_{5}$ is injective then $f_{3}$ is surjective.
(2) if $f_{2}, f_{4}$ are injective and $f_{1}$ is surjective then $f_{3}$ is injective.
(3) in particular, if $f_{1}, f_{2}, f_{4}, f_{5}$ are isomorphisms then so is $f_{3}$.

Definition. A short exact sequence of the form $0 \rightarrow A^{\prime} \rightarrow A^{\prime} \oplus A^{\prime \prime} \rightarrow A^{\prime \prime}$, where the first map is the inclusion into the first summand and the second map is the projection onto the second, is called split exact.

See homework problem 1.2 for characterizations of split exact sequences.
Definition. Let $f: A \rightarrow B$ be a homomorphism between abelian groups. Define its cokernel coker $(f)$ to be the quotient group $B / \operatorname{im}(f)$ and its coimage coim $(f)$ to be $A / \operatorname{ker}(f)$.

Lemma 1.5. For any homomorphism $f: A \rightarrow B$ of abelian groups, we have:
(1) $f: \operatorname{coim}(f) \rightarrow \operatorname{im}(f)$ is an isomorphism;
(2) $0 \rightarrow \operatorname{ker}(f) \rightarrow A \xrightarrow{f} B \rightarrow \operatorname{coker}(f) \rightarrow 0$ is exact.

Lemma 1.6 (Snake lemma). Given a diagram of abelian groups

with exact rows. Let $K_{i}$ denote the kernel of $A_{i} \rightarrow B_{i}$ and $C_{i}$ its cokernel. Then there is a "snake homomorphism" $K_{3} \rightarrow C_{1}$ such that the sequence

$$
K_{1} \rightarrow K_{2} \rightarrow K_{3} \rightarrow C_{1} \rightarrow C_{2} \rightarrow C_{3}
$$

is exact:


If $A_{1} \rightarrow A_{2}$ is injective then so is $K_{1} \rightarrow K_{2}$, and if $B_{2} \rightarrow B_{3}$ is injective then so is $C_{2} \rightarrow C_{3}$.

Furthermore, the snake map is natural, meaning that if we have a map $\left(A_{i}, B_{i}\right) \rightarrow$ $\left(A_{i}^{\prime}, B_{i}^{\prime}\right)$ of diagrams of the type (1.7) then the following square commutes:


Theorem 1.8. Let $0 \rightarrow A_{\bullet} \xrightarrow{i} B_{\bullet} \xrightarrow{p} C_{\bullet} \rightarrow 0$ be a short exact sequence of chain complexes (meaning $0 \rightarrow A_{n} \rightarrow B_{n} \rightarrow C_{n} \rightarrow 0$ is exact for each $n \in \mathbf{Z}$ ). Then there is a connecting homomorphism $\delta_{n}: H_{n+1}\left(C_{\bullet}\right) \rightarrow H_{n}\left(A_{\bullet}\right)$ such that the following long sequence is exact:

$$
\cdots \xrightarrow{p_{*}} H_{n+1}\left(C_{\bullet}\right) \xrightarrow{\delta_{n}} H_{n}\left(A_{\bullet}\right) \xrightarrow{i_{*}} H_{n}\left(B_{\bullet}\right) \xrightarrow{p_{*}} H_{n}\left(C_{\bullet}\right) \xrightarrow{\delta_{n-1}} H_{n-1}\left(A_{\bullet}\right) \xrightarrow{i_{*}} \cdots .
$$

The homomorphism $\delta$ is natural: given a map of short exact sequences of chain complexes $\left(A_{\bullet}, B_{\bullet}, C_{\bullet}\right) \rightarrow\left(A_{\bullet}^{\prime}, B_{\bullet}^{\prime}, C_{\bullet}^{\prime}\right)$, the following square commutes:


## 2. CATEGORIES AND FUNCTORS

Definition. A category $\mathcal{C}$ consists of:

- a class ob $(\mathcal{C})$ of objects;
- for each pair of objects $X, Y \in \mathrm{ob}(\mathcal{C})$, a set of morphisms $\operatorname{Hom}_{\mathcal{C}}(X, Y)$;
- for each object $X \in \operatorname{ob}(\mathcal{C})$, an element $\operatorname{id}_{X} \in \operatorname{Hom}_{\mathcal{C}}(X, X)$ called identity morphism;
- for each three objects $X, Y, Z \in \mathrm{ob}(\mathcal{C})$, a map

$$
\circ: \operatorname{Hom}_{\mathcal{C}}(Y, Z) \times \operatorname{Hom}_{\mathcal{C}}(X, Y) \rightarrow \operatorname{Hom}(X, Z), \quad(g, f) \mapsto g \circ f
$$

called composition.
These have to satisfy the following axioms:
(1) The composition $\circ$ is associative;
(2) For $f \in \operatorname{Hom}_{\mathcal{C}}(X, Y), \operatorname{id}_{Y} \circ f=f$ and $f \circ \operatorname{id}_{X}=f$.

A morphism $f \in \operatorname{Hom}_{\mathcal{C}}(X, Y)$ is called an isomorphism (and the objects $X, Y$ isomorphic) if there is another morphism $g \in \operatorname{Hom}_{\mathcal{C}}(Y, X)$ such that $g \circ f=\operatorname{id}_{X}$ and $g \circ g=\operatorname{id}_{\gamma}$. If such a $g$ exists, it is unique and is denoted by $f^{-1}$.

We will often abuse notation and write $X \in \mathcal{C}$ for $X \in \operatorname{ob}(\mathcal{C}), f \in \operatorname{Hom}(X, Y)$ or even just $f: X \rightarrow Y$ for $f \in \operatorname{Hom}_{\mathcal{C}}(X, Y)$, and id for $\operatorname{id}_{X}$. We will also use commutative diagrams to denote equalities between compositions of morphisms.

Definition. We use the following standard notations for familiar categories:
Set: The category of sets and functions;
Ab : The category of abelian groups and homomorphisms;
Top: The category of topological spaces and continuous maps.
Definition. Let $\mathcal{C}, \mathcal{D}$ be categories. A (covariant) functor $F: \mathcal{C} \rightarrow \mathcal{D}$ consists of:

- a function $\mathrm{ob}(\mathcal{C}) \rightarrow \mathrm{ob}(\mathcal{D})$, also called $F$; and
- for every $X, Y \in \mathrm{ob}(\mathcal{C})$, a function $\operatorname{Hom}_{\mathcal{C}}(X, Y) \rightarrow \operatorname{Hom}_{\mathcal{D}}(F(X), F(Y))$ denoted by $f \mapsto F(f)$ or $f \mapsto f_{*}$
satisfying $\left(\mathrm{id}_{X}\right)_{*}=\mathrm{id}_{F(X)}$ and $(g \circ f)_{*}=g_{*} \circ f_{*}$.
A contravariant functor $F: \mathcal{C} \rightarrow \mathcal{D}$ consists of:
- a function $\mathrm{ob}(\mathcal{C}) \rightarrow \mathrm{ob}(\mathcal{D})$, also called $F$; and
- for every $X, Y \in \operatorname{ob}(\mathcal{C})$, a function $\operatorname{Hom}_{\mathcal{C}}(X, Y) \rightarrow \operatorname{Hom}_{\mathcal{D}}(F(Y), F(X))$ denoted by $f \mapsto F(f)$ or $f \mapsto f^{*}$
satisfying $\left(\mathrm{id}_{X}\right)^{*}=\mathrm{id}_{F(X)}$ and $(g \circ f)^{*}=f^{*} \circ g^{*}$. ("It turns arrows around.")
Definition. A natural transformation $\eta: F \rightarrow G$ between two functors $F, G: \mathcal{C} \rightarrow$ $\mathcal{D}$ consists of a morphism $\eta_{X} \in \operatorname{Hom}_{\mathcal{D}}(F(X), G(X))$ for each object $X \in \mathcal{C}$ such that for each morphism $f: \operatorname{Hom}_{\mathcal{C}}(X, Y)$, the following diagram commutes:


Natural transformations between contravariant functors are defined analogously.
A natural transformation $\eta: F \rightarrow G$ is called natural isomorphism (and $F$ and $G$ isomorphic, $F \simeq G)$ if $\eta_{X}$ is an isomorphism for all $X \in \mathcal{C}$.

Definition. A covariant functor $F: \mathcal{C} \rightarrow \mathcal{D}$ is called an equivalence of categories if there is another functor $G: \mathcal{D} \rightarrow \mathcal{C}$ such that $G \circ F \simeq \operatorname{Id}_{\mathcal{C}}$ and $F \circ G \simeq \operatorname{Id}_{\mathcal{D}}$, where $\operatorname{Id}_{\mathcal{C}}, \operatorname{Id}_{\mathcal{D}}$ denote the identity functors on $\mathcal{C}$ and $\mathcal{D}$, respectively.

Definition. Let $\mathcal{C}$ be a category and $\left(X_{i}\right)_{i \in I}$ a family of objects in $\mathcal{C}$, for some index set $I$. An object $X$ together with morphisms $\iota_{i}: X_{i} \rightarrow X$ is called coproduct of the $X_{i}$, and is denoted by $\coprod_{i \in I} X_{i}$, if for each test object $Y \in \mathcal{C}$, the map

$$
\operatorname{Hom}_{\mathcal{C}}(X, Y) \xrightarrow{\operatorname{Hom}_{\mathcal{C}}\left(\iota_{i},-\right)} \prod_{i \in I} \operatorname{Hom}_{\mathcal{C}}\left(X_{i}, Y\right)
$$

is a bijection. The coproduct of only two objects is denoted by $X_{1} \sqcup X_{2}$.
Similarly, an object $X$ with morphism $\pi_{i}: X \rightarrow X_{i}$ is called product of the $X_{i}$, and is denoted by $\prod_{i \in I} X_{i}$, if for each test object $Y \in \mathcal{C}$, the map

$$
\operatorname{Hom}_{\mathcal{C}}(Y, X) \xrightarrow{\operatorname{Hom}_{\mathcal{C}}\left(-, \pi_{i}\right)} \prod_{i \in I} \operatorname{Hom}_{\mathcal{C}}\left(Y, X_{i}\right)
$$

is a bijection. The product of only two objects is denoted by $X_{1} \times X_{2}$.
Lemma 2.1. In an arbitrary category $\mathcal{C}$, (co-)products need not exist, but if they do, they are unique up to isomorphism.

## 3. Rings and modules

Definition. A ring $R$ is an abelian group together with a unity $1 \in R$ and an associative bilinear map $R \times R \rightarrow R,(x, y) \mapsto x y$, such that $1 x=x 1=x$ for all $x \in R$. A ring is called commutative if $x y=y x$ for all $x, y \in R$.

A map $f: R \rightarrow S$ between rings is called a ring homomorphism or map of rings if it is linear, $f\left(1_{R}\right)=1_{S}$, and $f(x y)=f(x) f(y)$ for all $x, y \in R$.
Definition. A left module $M$ over a ring $R$ is an abelian group $M$ together with a bilinear multiplication $\operatorname{map} R \times M \rightarrow M,(r, m) \mapsto r . m$, such that $1 . m=m$ and $\left(r_{1} r_{2}\right) \cdot m=r_{1} \cdot\left(r_{2} \cdot m\right)$ for all $m \in M, r_{i} \in R$.

A right module is an abelian group $M$ with a bilinear multiplication map $M \times$ $R \rightarrow M,(m, r) \mapsto m . r$, such that $m .1=m$ and $m .\left(r_{1} r_{2}\right)=\left(m \cdot r_{1}\right) \cdot r_{2}$ for all $m \in M$, $r_{i} \in R$.

When we just say "module", we agree to mean a left module.
A map $f: M \rightarrow N$ between two (left or right) $R$-modules $M, N$ is an $R$-module homomorphism if it is a abelian group homomorphism and $f(r . m)=r . f(m)$ (resp. $f(m . r)=f(m) . r)$ for all $r \in R, m \in M$.

The category of left $R$-modules and $R$-module homomorphisms is denoted by $\operatorname{Mod}_{R}$.
Definition. The product of a family $\left(M_{i}\right)_{i \in I}$ of $R$-modules, denoted by $\prod_{i \in I} M_{i}$, is the module whose underlying abelian group is the product groups, and the $R$ module structure is given by $r .\left(\left(m_{i}\right)_{i \in I}\right)=\left(r . m_{i}\right)_{i \in I}$. The direct sum of the family, denoted by $\bigoplus_{i \in I} M_{i}$, is the submodule of families $\left(m_{i}\right)_{i \in I}$ where all but finitely many $m_{i}=0$.

An $R$-module $M$ is called free if it is isomorphic to an (arbitrarily indexed) direct sum of copies of $R$.

Lemma 3.1. The direct product is a product in $\operatorname{Mod}_{R}$ in the category-theoretic sense, and the direct sum is a coproduct.
Definition. Let $R$ be a ring, $M$ a right $R$-module, and $N$ a left $R$-module. The tensor product $M \otimes_{R} N$ is the abelian group obtained as follows. Denote by $\operatorname{Fr}(M \times N)$ the free abelian group with generators pairs $(m, n)$ with $m \in M, n \in N$. Then
$M \otimes_{R} N$ is the quotient of $\operatorname{Fr}(M \times N)$ with respect to an equivalence relation $\sim$ given by:

- $\left(m_{1}+m_{2}, n\right) \sim\left(m_{1}, n\right)+\left(m_{2}, n\right)$
- $\left(m, n_{1}+n_{2}\right) \sim\left(m, n_{1}\right)+\left(m, n_{2}\right)$
- $(m . r, n) \sim(m, r . n)$

We denote the equivalence class of $(m, n)$ in $M \otimes_{R} N$ by $m \otimes n$.
Proposition 3.2. In the context of the previous definition, let $T$ be an abelian group. Denote by $\operatorname{Bil}(M, N ; T)$ the set of all bilinear homomorphisms $f: M \times N \rightarrow T$ with $f(m . r, n)=f(m, r . n)$. Then there is a natural isomorphism

$$
\operatorname{Bil}(M, N ; T) \cong \operatorname{Hom}_{\mathbf{Z}}\left(M \otimes_{R} N, T\right) .
$$

Definition (and lemma). An $R$-module $M$ is called projective if it satisfies the following equivalent conditions:
(1) For each diagram in $\operatorname{Mod}_{R}$

with exact row, a lift (dotted arrow) exists such that the resulting diagram commutes.
(2) There is an $R$-module $N$ such that $M \oplus N$ is free.
(3) Every shot exact sequence $0 \rightarrow N_{1} \rightarrow N_{2} \rightarrow M \rightarrow 0$ splits.
(4) The functor $\operatorname{Hom}_{R}(M,-)$ maps exact sequences to exact sequences (the functor "is exact").
Lemma 3.3. Let $0 \rightarrow N^{\prime} \rightarrow N \rightarrow N^{\prime \prime} \rightarrow 0$ be an exact sequence of right $R$-modules, and let $M$ be a left $R$-module. Then the sequence of abelian groups

$$
N^{\prime} \otimes_{R} M \rightarrow N \otimes_{R} M \rightarrow N^{\prime \prime} \otimes_{R} M \rightarrow 0
$$

is exact. Let $0 \rightarrow N^{\prime} \rightarrow N \rightarrow N^{\prime \prime} \rightarrow 0$ be an exact sequence of left $R$-modules, and let $M$ be another left $R$-module. Then the sequence of abelian groups

$$
0 \rightarrow \operatorname{Hom}_{R}\left(N^{\prime \prime}, M\right) \rightarrow \operatorname{Hom}_{R}(N, M) \rightarrow \operatorname{Hom}_{R}\left(N^{\prime}, M\right)
$$

is exact.
Definition. A left $R$-module $M$ is called flat if the functor $-\otimes_{R} M$ from right $R$ modules to abelian groups is exact. A right $R$-module is flat if the functor $M \otimes_{R}-$ from left $R$-modules to abelian groups is exact.

Lemma 3.4. Free modules are projective. Projective modules are flat. Not every flat module is projective, and not every projective module is free.

## 4. Resolutions and derived functors

Definition. Let $R$ be a ring. A nonnegatively graded chain complex $P_{\bullet}$. of $R$ modules together with a map $\epsilon P_{0} \rightarrow M$ (the "augmentation") is called a projective resolution of $M$ if

- For every $i \geq 0, P_{i}$ is projective;
- The extended chain complex $\cdots \rightarrow P_{1} \rightarrow P_{0} \xrightarrow{\epsilon} M$ is exact.

Proposition 4.1. Every R-module $M$ has a projective resolution.
Corollary 4.2. If $R$ is a principal ideal domain then every $R$-module has a projective resolution of length 2 :

$$
0 \rightarrow P_{1} \rightarrow P_{0} \rightarrow M \rightarrow 0
$$

Definition. Let $C_{\bullet}, D_{\bullet}$ be nonnegatively graded chain complexes of $R$-modules and let $f, g: C_{\bullet} \rightarrow D_{\bullet}$ be two chain maps. A chain homotopy from $f$ to $g$ is a sequence of $R$-linear maps $h_{n}: C_{n-1} \rightarrow D_{n}$ such that

$$
g-f=h \circ \partial^{C}+\partial^{D} \circ h .
$$

If such a chain homotopy exists, we call $f$ and $g$ chain homotopic and write $f \simeq g$.
If $f: C_{\bullet} \rightarrow D_{\bullet}$ and $g: D_{\bullet} \rightarrow C_{\mathbf{\bullet}}$ are chain maps with chain homotopies $\mathfrak{g} \circ f \simeq$ $\operatorname{id}_{C_{.}}$and $f \circ g \simeq \operatorname{id}_{D_{\bullet}}$, we call $f$ and $g$ chain homotopy equivalences and the chain complexes $C_{\bullet}$ and $D_{\bullet}$ chain homotopy equivalent.

Proposition 4.3. If $f \simeq g$ then $f_{*}=g_{*}: H_{*}\left(C_{\bullet}\right) \rightarrow H_{*}\left(D_{\bullet}\right)$.
Theorem 4.4. Let $f: M \rightarrow N$ be a morphism of $R$-modules, $P_{\bullet} \rightarrow M$ a chain complex where all $P_{i}$ are projective, and $N_{\bullet} \rightarrow N \rightarrow 0$ be an exact complex. Then
(1) The exists a chain map $f_{\bullet}: P_{\bullet} \rightarrow N_{\bullet}$ making the following ladder commute:

(2) Any two such extensions $f_{\bullet}, g_{\bullet}$ are chain homotopic.

Corollary 4.5. Any two projective resolutions of $M$ are chain homotopy equivalent.
Definition. Let $R, S$ be two rings and $F: \operatorname{Mod}_{R} \rightarrow \operatorname{Mod}_{S}$ a (covariant or contravariant) functor. We call $F$ additive if the induced map on Hom-sets

$$
\operatorname{Hom}_{R}(M, N) \xrightarrow{F} \operatorname{Hom}_{S}(F(M), F(N)) \quad\left(\text { resp. } \operatorname{Hom}_{S}(F(N), F(M))\right)
$$

is a homomorphism of abelian groups.
Let $F$ be an additive covariant functor as above. Then we call $F$

- left exact if $0 \rightarrow F\left(M^{\prime}\right) \rightarrow F(M) \rightarrow F\left(M^{\prime \prime}\right)$ is exact;
- right exact if $F\left(M^{\prime}\right) \rightarrow F(M) \rightarrow F\left(M^{\prime \prime}\right)$ is exact;
- exact if it is right and left exact, i. e. if $0 \rightarrow F\left(M^{\prime}\right) \rightarrow F(M) \rightarrow F\left(M^{\prime \prime}\right) \rightarrow 0$ is exact
for all choices of exact sequences $0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0$ of $R$-modules.
Similarly, if $F$ is contravariant, we call it
- left exact if $0 \rightarrow F\left(M^{\prime \prime}\right) \rightarrow F(M) \rightarrow F\left(M^{\prime}\right)$ is exact;
- right exact if $F\left(M^{\prime \prime}\right) \rightarrow F(M) \rightarrow F\left(M^{\prime}\right)$ is exact;
- exact if it is right and left exact, i. e. if $0 \rightarrow F\left(M^{\prime \prime}\right) \rightarrow F(M) \rightarrow F\left(M^{\prime}\right) \rightarrow 0$ is exact
for all choices of exact sequences $0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0$ of $R$-modules.

Definition (and lemma). Let $F: \operatorname{Mod}_{R} \rightarrow \operatorname{Mod}_{S}$ be a covariant right exact functor, $M$ an $R$-module, and $P_{\bullet} \rightarrow M$ a projective resolution of $M$. Define the $n$th left derived functor $L_{n} F: \operatorname{Mod}_{R} \rightarrow \operatorname{Mod}_{S}$ by

$$
\left(L_{n} F\right)(N)=H_{n}\left(F\left(P_{\bullet}\right)\right)
$$

Similarly, if $F$ is a contravariant left exact functor, define the $n$ right derived functor $R^{n} F: \operatorname{Mod}_{R} \rightarrow \operatorname{Mod}_{S}$ by

$$
\left(R^{n} F\right)(N)=H^{n}\left(F\left(P_{\bullet}\right)\right)
$$

This is independent of the choice of resolution and extends to a functor by defining it on morphisms as follows: if $f: M \rightarrow M^{\prime}$ is a morphism of $R$-modules, extend it to a morphism $f_{\bullet}: P_{\bullet} \rightarrow P_{\bullet}^{\prime}$ by Thm. 4.4 and set

$$
L_{n}(F)(f)=H_{n}\left(F\left(f_{\bullet}\right)\right) ;
$$

similarly for right derived functors.
Lemma 4.6. If $F$ is covariant right exact then $L_{0} F=F$. If $F$ is contravariant left exact then $R^{0} F=F$.

Lemma 4.7. If $R$ is a principal ideal ring and $F: \operatorname{Mod}_{R} \rightarrow \operatorname{Mod}_{S}$ a right exact covariant or left exact contravariant functor. Then $L_{n} F=0\left(r e s p . R^{n} F=0\right)$ if $n \geq 2$.

Lemma 4.8. Let $F$ be a covariant left exact functor. Then $L_{n} F=0$ for all $n \geq 1$ if and only if $F$ is exact.

Definition. Let $R$ be a ring, $M$ a right $R$-module, and $N$ a left $R$-module. Define $\operatorname{Tor}_{n}^{R}(M, N)$ to be the $n$th left derived functor of the functor $-\otimes_{R} N:{ }_{R} \operatorname{Mod} \rightarrow \mathrm{Ab}$, applied to $M$ :

$$
\operatorname{Tor}_{n}^{R}(M, N)=\left[L_{n}\left(-\otimes_{R} N\right)\right](M)
$$

Let $M$ and $N$ be left modules. Define $\operatorname{Ext}_{R}^{n}(M, N)$ to be the $n$th right derived functor of the functor $\operatorname{Hom}_{R}(-, N)$, applied to $M$ :

$$
\operatorname{Ext}_{R}^{n}(M, N)=\left[R^{n} \operatorname{Hom}(-, N)\right](M)
$$

Proposition 4.9. (symmetric of Tor) The functor $\operatorname{Tor}_{n}^{R}$ coincides with the nth left derived functor of the functor $M \otimes_{R}-: \operatorname{Mod}_{R} \rightarrow \mathrm{Ab}$, applied to $N$ :

$$
\operatorname{Tor}_{n}^{R}(M, N)=\left[L_{n}\left(M \otimes_{R}-\right)\right](N)
$$

## 5. Homology of spaces

Definition. Denote by Top the category of topological spaces and continuous maps. We also write Top ${ }_{*}$ for the category of pointed spaces. Its objects are pairs $\left(X, x_{0}\right)$ where $X$ is a topological spaces and $x_{0} \in X$. Morphisms from $\left(X, x_{0}\right)$ to $\left(Y, y_{0}\right)$ in Top $_{*}$ are continuous maps $f: X \rightarrow Y$ such that $f\left(x_{0}\right)=y_{0}$.
Definition (recollection). Two maps $f, g: X \rightarrow Y$ are called homotopic $(f \simeq g)$ if there exists a homotopy between them, i.e. a map $H: X \times[0,1] \rightarrow Y$ with $H(x, 0)=f(x)$ and $H(x, 1)=g(x)$ for all $x \in X$. We call two spaces $X$ and $Y$ homotopy equivalent if there are maps $f: X \rightarrow Y$ and $g: Y \rightarrow X$ such that $g \circ f \simeq \operatorname{id}_{X}$ and $f \circ g \simeq \operatorname{id}_{Y}$.

### 5.1. Cones, mapping cones, and suspensions.

Definition. Let $X$ be a space. Its (unreduced) cone is the space

$$
C X=X \times[0,1] / \sim,
$$

where $(x, 1) \sim\left(x^{\prime}, 1\right)$ for all $x, x^{\prime} \in X$. If $x_{0}$ is a fixed base point of $X$, we also denote its reduced cone by $C^{\text {red }} X$; it is defined by

$$
C X=X \times[0,1] / \mathrm{sim}
$$

where $(x, 1) \sim\left(x^{\prime}, 1\right)$ as before but also $\left(x_{0}, t\right)=\left(x_{0}, t^{\prime}\right)$ for all $t, t^{\prime} \in[0,1]$.
Lemma 5.1. A map $f: X \rightarrow Y$ is homotopic to a constant map ("null-homotopic") iff it extends to a map $\tilde{f}: C X \rightarrow Y$ from the unreduced cone on $X$ to $Y$.

A pointed map $f:\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right)$ is homotopic to the constant map with value $y_{0}$ via a homotopy that does not move $x_{0}$ iff it extends to a map $\tilde{f}: C^{\text {red }} X \rightarrow Y$ from the reduced cone on $X$ to $Y$.

Definition. Given a map $f: A \rightarrow X$, define its (unreduced) mapping cone by

$$
C_{f}=(A \times[0,1] \sqcup X) / \sim,
$$

where $(a, 1) \sim\left(a^{\prime}, 1\right)$ for all $a, a^{\prime} \in A$ and $(a, 0) \sim f(a)$ for $a \in A$. Similarly, if $f$ is a pointed map with $f\left(a_{0}\right)=x_{0}$, the reduced mapping cone $C_{f}^{\text {red }}$ is obtained by adding

$$
\left(a_{0}, t\right) \sim\left(a_{0}, t^{\prime}\right) \sim x_{0}
$$

to the equivalence relation, for all $t, t^{\prime} \in[0,1]$.
Lemma 5.2. Let $f: A \rightarrow X, g: X \rightarrow Y$ be maps. Then $g$ extends to $\tilde{g}: C_{f} \rightarrow Y$ iff the composite $g \circ f$ is homotopic to a constant map.

If all maps are pointed then $g$ extends to $\tilde{g}: C_{f}^{\text {red }} \rightarrow Y$ iff the composite $g \circ f$ is homotopic to the constant map with value $y_{0}$ via a homotopy that does not move $x_{0}$.

Definition. The unreduced suspension $S X$ of a space $X$ is the unreduced mapping cone of the unique map $X \rightarrow *$; the reduced suspension $\Sigma X$ of a pointed space $X$ is the reduced mapping cone of the unique pointed map $X \rightarrow *$.
Remark 5.3. For "good" spaces $X$ and base points $x_{0} \in X$, the quotient maps $C X \rightarrow C^{\text {red }} X, S X \rightarrow \Sigma X$, and, for based maps $A \rightarrow X, C_{f} \rightarrow C_{f}^{\text {red }}$, are homotopy equivalences. "Good" here means "well-pointed", which is implied for instance if $x_{0}$ has a contractible neighborhood in X.
5.2. The Eilenberg-Steenrod axioms. Let $R$ be a ring, $A$ an $R$-module, and

$$
H_{n}: \text { Top } \rightarrow \operatorname{Mod}_{R}
$$

be a sequence of functors. We write $\tilde{H}_{n}(X)=\operatorname{ker}\left(H_{n}(X) \rightarrow H_{n}(*)\right)$, where the map is induced by the unique map $X \rightarrow *$.

Then $\left(H_{n}\right)_{n \in \mathbf{Z}}$ is called a homology theory with coefficients in $A$ if the following axioms hold:
homotopy: if $f \simeq g$ then $H_{n}(f)=H_{n}(g)$ for all $n \in \mathbf{Z}$.
additivity: if $X=\coprod_{i \in I} X_{i}$ then $\bigoplus_{i \in I} H_{n}\left(X_{i}\right) \cong H_{n}(X)$; the isomorphism is given by the canonical inclusions $X_{i} \hookrightarrow X$.
dimension: $H_{n}(*)=\left\{\begin{array}{ll}0 ; & n \neq 0 \\ A ; & n=0 .\end{array}\right.$ In particular, $H_{n}(X) \cong \tilde{H}_{n}(X)$ for $n \neq 0$.
exactness: Let $f: A \rightarrow X$ be a map and $g: X \rightarrow C_{f}$ be the standard inclusion. Then there is a natural long exact sequence

$$
\cdots \rightarrow H_{n}(A) \xrightarrow{f_{*}} H_{n}(X) \xrightarrow{g_{*}} \tilde{H}_{n}\left(C_{f}\right) \rightarrow H_{n-1}(A) \rightarrow \cdots
$$

Mayer-Vietoris: Let $X=U \cup V$, where $U$ and $V$ are open subsets of $X$, and $Z=U \cap V$. Then there is a long exact sequence

$$
\cdots \rightarrow H_{n}(Z) \xrightarrow{i_{*}-j_{*}} H_{n}(U) \oplus H_{n}(V) \xrightarrow{p_{*}+q_{*}} H_{n}(X) \rightarrow H_{n-1}(Z) \rightarrow \cdots
$$

where the map $i: Z \hookrightarrow U, j: Z \hookrightarrow V, p: U \hookrightarrow X, q: V \hookrightarrow X$ are all the standard inclusions.

Theorem 5.4. For every ring $R$ and every $R$-module $A$, there exists (up to equivalence of functors) precisely one homology theory with coefficients in $A$.
5.3. Beginning calculations. For simplicity, let $R=\mathbf{Z}, A=\mathbf{Z}$.

Lemma 5.5. If $X$ is discrete then $H_{n}(X) \cong \begin{cases}0 ; & n \neq 0 \\ \bigoplus_{x \in X} \mathbf{Z} ; & n=0 .\end{cases}$
Lemma 5.6. Denote by $\mathbf{S}^{k}$ the standard $k$-dimensional sphere. Then

$$
\tilde{H}_{n}\left(\mathbf{S}^{k}\right) \cong \begin{cases}0 ; & n \neq k \\ \mathbf{Z} ; & n=k\end{cases}
$$

Lemma 5.7. For any pointed space $X, H_{n+1}(\Sigma X) \cong \tilde{H}_{n}(X)$.
Lemma 5.8. Let $\mathbf{D}^{n+1}$ be the $(n+1)$-dimensional disk, which has $\mathbf{S}^{n}$ as boundary. There is no continuous function $\mathbf{D}^{n+1} \rightarrow \mathbf{S}^{n}$ which is the identity, or even homotopic to the identity, on $\mathbf{S}^{n}$.

Corollary 5.9 (Brouwer's fixed point theorem). Every continuous self-map of $\mathbf{D}^{n}$ has a fixed point.
5.4. Mapping degrees. A map $f: \mathbf{S}^{n} \rightarrow \mathbf{S}^{n}$ gives a homomorphism of homology groups $H_{n}\left(\mathbf{S}^{n}\right) \cong \mathbf{Z}$, so it's multiplication by a number $d$, called the mapping degree of $f, \operatorname{deg}(f)$.
Lemma 5.10. If $f: \mathbf{S}^{n} \rightarrow \mathbf{S}^{n}$ is homotopic to a constant map then $\operatorname{deg}(f)=0$.
Lemma 5.11. $\operatorname{deg}(i d)=1$
Lemma 5.12. $\operatorname{deg}(f \circ g)=\operatorname{deg}(f) \operatorname{deg}(g)$.
Lemma 5.13. If $f \in O(n+1)$ then $\operatorname{deg}(f)=\operatorname{det}(f)$.
Corollary 5.14. The map $x \mapsto-x$ on $\mathbf{S}^{n}$ has degree $(-1)^{n+1}$. (This map is called the antipodal map.)
Corollary 5.15. If $f: \mathbf{S}^{n} \rightarrow \mathbf{S}^{n}$ has no fixed points then $\operatorname{deg} f=(-1)^{n+1}$.
Theorem 5.16 (Hairy ball theorem). Let $n$ be even and $f: \mathbf{S}^{n} \rightarrow \mathbf{R}^{n+1}$ be a continuous map such that $f(x) \perp x$ for all $x$. Then $f(x)=0$ for some $x \in \mathbf{S}^{n}$.

