1. CHAIN COMPLEXES

Definition. A sequence of abelian groups

$$\ldots C_{-2}, C_{-1}, C_0, C_1, \ldots$$

with homomorphisms $\partial_i \colon C_{i+1} \to C_i$ is called a (homological) **chain complex** if $\partial_{i-1} \circ \partial_i = 0$ for all $i \in \mathbb{Z}$.

A **cohomological chain complex** is almost the same thing, but with reversed grading: a sequence of abelian groups

$$..C^{-2}, C^{-1}, C^{0}, C^{1}, ...$$

together with homomorphisms $d^i \colon C^{i-1} \to C^i$ such that $d^i \circ d^{i-1} = 0$ for all $i \in \mathbb{Z}$.

We will concentrate on homological chain complexes; all results hold analogously for cohomological chain complexes.

A chain complex (or just a sequence of abelian groups with homomorphisms) is called **bounded below** (**bounded above**) if $C_i = 0$ for $i \ll 0$ (resp. $i \gg 0$). It is called **non-negatively graded** (**non-positively graded**) if $C_i = 0$ for i < 0 (resp. i > 0).

Definition. We call the subgroup $Z_i(C_{\bullet}) = \ker(\partial_{i-1}: C_i \to C_{i-1}) < C_i$ the subgroup of *i*-cycles and the subgroup $B_i(C_{\bullet}) = \operatorname{im}(\partial_i: C_{i+1} \to C_i) < C_i$ the subgroup of *i*-boundaries.

Lemma 1.1. For any chain complex C_{\bullet} , $B_i(C_{\bullet})$ is a subgroup of $Z_i(C_{\bullet})$.

Definition. The *i*th **homology group** of a chain complex *C*• is defined as the quotient group

$$H_i(C_{\bullet}) = Z_i(C_{\bullet}) / B_i(C_{\bullet}).$$

If $Z_n = B_n$ for all *n* (and thus $H_n = 0$), we call C_{\bullet} exact or acyclic. An exact chain complex is more usually called exact sequence. An exact sequence of the form

$$0 \to A' \to A \to A'' \to 0$$

is often called a **short exact sequence**.

Lemma 1.2. Let A, B, C be abelian groups and $f: A \rightarrow B$ and $g: B \rightarrow C$ homomorphisms.

- (1) $0 \to A \xrightarrow{f} B$ is exact iff f is injective.
- (2) $A \xrightarrow{f} B \to 0$ is exact iff f is surjective.
- (3) $0 \to A \xrightarrow{f} B \to 0$ is exact iff f is an isomorphism.
- (4) $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ is exact iff f is injective, g is surjective, and ker $g = \operatorname{im} f$.

Definition. Let A_{\bullet} , B_{\bullet} be sequences of abelian groups and homomorphisms (or chain complexes). A **map of sequences** (or **map of chain complexes**) is a commutative diagram

$$\cdots \longrightarrow A_{n+1} \xrightarrow{\partial_n^A} A_n \xrightarrow{\partial_{n-1}^A} A_{n-1} \longrightarrow \cdots$$
$$\downarrow^{f_{n+1}} \qquad \qquad \downarrow^{f_n} \qquad \qquad \downarrow^{f_{n-1}} \\ \cdots \longrightarrow B_{n+1} \xrightarrow{\partial_n^B} B_n \xrightarrow{\partial_{n-1}^B} B_{n-1} \longrightarrow \cdots$$

Lemma 1.3. A map of chain complexes $f: C_{\bullet} \to D_{\bullet}$ induces maps

 $Z(f): \quad Z_n(C_{\bullet}) \to Z_n(D_{\bullet}) \quad of \ n-cycles,$ $B(f): \quad B_n(C_{\bullet}) \to B_n(D_{\bullet}) \quad of \ n-boundaries, \ and$ $H_n(f) = f_*: \quad H_n(C_{\bullet}) \to H_n(D_{\bullet}) \quad on \ homology.$

Lemma 1.4 (Five-lemma). Let

be a commutative diagram of abelian groups with exact rows. Then:

- (1) if f_2 , f_4 are surjective and f_5 is injective then f_3 is surjective.
- (2) if f_2 , f_4 are injective and f_1 is surjective then f_3 is injective.
- (3) in particular, if f_1 , f_2 , f_4 , f_5 are isomorphisms then so is f_3 .

Definition. A short exact sequence of the form $0 \rightarrow A' \rightarrow A' \oplus A'' \rightarrow A''$, where the first map is the inclusion into the first summand and the second map is the projection onto the second, is called **split exact**.

See homework problem 1.2 for characterizations of split exact sequences.

Definition. Let $f: A \to B$ be a homomorphism between abelian groups. Define its **cokernel** coker(f) to be the quotient group B/im(f) and its **coimage** coim(f) to be A/ker(f).

Lemma 1.5. For any homomorphism $f: A \to B$ of abelian groups, we have:

- (1) $f: \operatorname{coim}(f) \to \operatorname{im}(f)$ is an isomorphism;
- (2) $0 \to \ker(f) \to A \xrightarrow{f} B \to \operatorname{coker}(f) \to 0$ is exact.

Lemma 1.6 (Snake lemma). *Given a diagram of abelian groups*

$$\begin{array}{cccc}
 & A_1 \longrightarrow A_2 \longrightarrow A_3 \longrightarrow 0 \\
 & & \downarrow & & \downarrow \\
 & 0 \longrightarrow B_1 \longrightarrow B_2 \longrightarrow B_3
\end{array}$$
(1.7)

with exact rows. Let K_i denote the kernel of $A_i \rightarrow B_i$ and C_i its cokernel. Then there is a "snake homomorphism" $K_3 \rightarrow C_1$ such that the sequence

$$K_1 \rightarrow K_2 \rightarrow K_3 \rightarrow C_1 \rightarrow C_2 \rightarrow C_3$$

is exact:

If $A_1 \rightarrow A_2$ is injective then so is $K_1 \rightarrow K_2$, and if $B_2 \rightarrow B_3$ is injective then so is $C_2 \rightarrow C_3$.

Furthermore, the snake map is natural, meaning that if we have a map $(A_i, B_i) \rightarrow$ (A'_i, B'_i) of diagrams of the type (1.7) then the following square commutes:

Theorem 1.8. Let $0 \to A_{\bullet} \xrightarrow{i} B_{\bullet} \xrightarrow{p} C_{\bullet} \to 0$ be a short exact sequence of chain complexes (meaning $0 \to A_n \to B_n \to C_n \to 0$ is exact for each $n \in \mathbb{Z}$). Then there is a connecting **homomorphism** $\delta_n \colon H_{n+1}(C_{\bullet}) \to H_n(A_{\bullet})$ such that the following long sequence is exact:

$$\cdots \xrightarrow{p_*} H_{n+1}(C_{\bullet}) \xrightarrow{\delta_n} H_n(A_{\bullet}) \xrightarrow{i_*} H_n(B_{\bullet}) \xrightarrow{p_*} H_n(C_{\bullet}) \xrightarrow{\delta_{n-1}} H_{n-1}(A_{\bullet}) \xrightarrow{i_*} \cdots$$

The homomorphism δ is natural: given a map of short exact sequences of chain complexes $(A_{\bullet}, B_{\bullet}, C_{\bullet}) \rightarrow (A'_{\bullet}, B'_{\bullet}, C'_{\bullet})$, the following square commutes:

$$\begin{array}{ccc} H_{n+1}(C_{\bullet}) & \stackrel{\delta}{\longrightarrow} & H_n(A_{\bullet}) \\ & & \downarrow \\ & & \downarrow \\ H_{n+1}(C'_{\bullet}) & \stackrel{\delta}{\longrightarrow} & H_n(A'_{\bullet}). \end{array}$$

2. CATEGORIES AND FUNCTORS

Definition. A category C consists of:

- a class ob(*C*) of **objects**;
- for each pair of objects $X, Y \in ob(\mathcal{C})$, a set of **morphisms** Hom_{\mathcal{C}}(X, Y);

- for each object X ∈ ob(C), an element id_X ∈ Hom_C(X, X) called identity morphism;
- for each three objects $X, Y, Z \in ob(\mathcal{C})$, a map

$$\circ: \operatorname{Hom}_{\mathcal{C}}(Y, Z) \times \operatorname{Hom}_{\mathcal{C}}(X, Y) \to \operatorname{Hom}(X, Z), \quad (g, f) \mapsto g \circ f$$

called **composition**.

These have to satisfy the following axioms:

- (1) The composition \circ is associative;
- (2) For $f \in \text{Hom}_{\mathcal{C}}(X, Y)$, $\text{id}_Y \circ f = f$ and $f \circ \text{id}_X = f$.

A morphism $f \in \text{Hom}_{\mathcal{C}}(X, Y)$ is called an **isomorphism** (and the objects X, Y **isomorphic**) if there is another morphism $g \in \text{Hom}_{\mathcal{C}}(Y, X)$ such that $g \circ f = \text{id}_X$ and $g \circ g = \text{id}_Y$. If such a g exists, it is unique and is denoted by f^{-1} .

We will often abuse notation and write $X \in C$ for $X \in ob(C)$, $f \in Hom(X, Y)$ or even just $f: X \to Y$ for $f \in Hom_{\mathcal{C}}(X, Y)$, and id for id_X . We will also use commutative diagrams to denote equalities between compositions of morphisms.

Definition. We use the following standard notations for familiar categories:

Set: The category of sets and functions;

Ab: The category of abelian groups and homomorphisms;

Top: The category of topological spaces and continuous maps.

Definition. Let C, D be categories. A (covariant) functor $F: C \to D$ consists of:

- a function $ob(C) \rightarrow ob(D)$, also called *F*; and
- for every $X, Y \in ob(\mathcal{C})$, a function $Hom_{\mathcal{C}}(X,Y) \to Hom_{\mathcal{D}}(F(X),F(Y))$ denoted by $f \mapsto F(f)$ or $f \mapsto f_*$

satisfying $(id_X)_* = id_{F(X)}$ and $(g \circ f)_* = g_* \circ f_*$.

A contravariant functor $F: \mathcal{C} \to \mathcal{D}$ consists of:

- a function $ob(\mathcal{C}) \rightarrow ob(\mathcal{D})$, also called *F*; and
- for every $X, Y \in ob(\mathcal{C})$, a function $Hom_{\mathcal{C}}(X,Y) \to Hom_{\mathcal{D}}(F(Y),F(X))$ denoted by $f \mapsto F(f)$ or $f \mapsto f^*$

satisfying $(id_X)^* = id_{F(X)}$ and $(g \circ f)^* = f^* \circ g^*$. ("It turns arrows around.")

Definition. A natural transformation η : $F \to G$ between two functors $F, G: C \to D$ consists of a morphism $\eta_X \in \text{Hom}_D(F(X), G(X))$ for each object $X \in C$ such that for each morphism $f: \text{Hom}_C(X, Y)$, the following diagram commutes:

$$\begin{array}{c} F(X) \xrightarrow{\eta_X} G(X) \\ \downarrow^{F(f)} \qquad \downarrow^{G(f)} \\ F(Y) \xrightarrow{\eta_Y} G(Y). \end{array}$$

Natural transformations between contravariant functors are defined analogously.

A natural transformation $\eta: F \to G$ is called **natural isomorphism** (and *F* and *G* **isomorphic**, $F \simeq G$) if η_X is an isomorphism for all $X \in C$.

Definition. A covariant functor $F : C \to D$ is called an **equivalence of categories** if there is another functor $G : D \to C$ such that $G \circ F \simeq Id_C$ and $F \circ G \simeq Id_D$, where Id_C , Id_D denote the identity functors on C and D, respectively.

4

Definition. Let C be a category and $(X_i)_{i \in I}$ a family of objects in C, for some index set I. An object X together with morphisms $\iota_i \colon X_i \to X$ is called **coproduct** of the X_i , and is denoted by $\coprod_{i \in I} X_i$, if for each test object $Y \in C$, the map

$$\operatorname{Hom}_{\mathcal{C}}(X,Y) \xrightarrow{\operatorname{Hom}_{\mathcal{C}}(\iota_{i},-)} \prod_{i \in I} \operatorname{Hom}_{\mathcal{C}}(X_{i},Y)$$

is a bijection. The coproduct of only two objects is denoted by $X_1 \sqcup X_2$.

Similarly, an object *X* with morphism $\pi_i \colon X \to X_i$ is called **product** of the X_i , and is denoted by $\prod_{i \in I} X_i$, if for each test object $Y \in C$, the map

$$\operatorname{Hom}_{\mathcal{C}}(Y,X) \xrightarrow{\operatorname{Hom}_{\mathcal{C}}(-,\pi_i)} \prod_{i \in I} \operatorname{Hom}_{\mathcal{C}}(Y,X_i)$$

is a bijection. The product of only two objects is denoted by $X_1 \times X_2$.

Lemma 2.1. In an arbitrary category C, (co-)products need not exist, but if they do, they are unique up to isomorphism.

3. RINGS AND MODULES

Definition. A ring *R* is an abelian group together with a unity $1 \in R$ and an associative bilinear map $R \times R \to R$, $(x, y) \mapsto xy$, such that 1x = x1 = x for all $x \in R$. A ring is called **commutative** if xy = yx for all $x, y \in R$.

A map $f: R \to S$ between rings is called a **ring homomorphism** or **map of rings** if it is linear, $f(1_R) = 1_S$, and f(xy) = f(x)f(y) for all $x, y \in R$.

Definition. A **left module** *M* over a ring *R* is an abelian group *M* together with a bilinear multiplication map $R \times M \rightarrow M$, $(r, m) \mapsto r.m$, such that 1.m = m and $(r_1r_2).m = r_1.(r_2.m)$ for all $m \in M$, $r_i \in R$.

A **right module** is an abelian group *M* with a bilinear multiplication map $M \times R \rightarrow M$, $(m, r) \mapsto m.r$, such that m.1 = m and $m.(r_1r_2) = (m.r_1).r_2$ for all $m \in M$, $r_i \in R$.

When we just say "module", we agree to mean a left module.

A map $f: M \to N$ between two (left or right) *R*-modules *M*, *N* is an *R*-module homomorphism if it is a abelian group homomorphism and f(r.m) = r.f(m) (resp. f(m.r) = f(m).r) for all $r \in R$, $m \in M$.

The category of left *R*-modules and *R*-module homomorphisms is denoted by Mod_R .

Definition. The **product** of a family $(M_i)_{i \in I}$ of *R*-modules, denoted by $\prod_{i \in I} M_i$, is the module whose underlying abelian group is the product groups, and the *R*-module structure is given by $r.((m_i)_{i \in I}) = (r.m_i)_{i \in I}$. The **direct sum** of the family, denoted by $\bigoplus_{i \in I} M_i$, is the submodule of families $(m_i)_{i \in I}$ where all but finitely many $m_i = 0$.

An *R*-module *M* is called **free** if it is isomorphic to an (arbitrarily indexed) direct sum of copies of *R*.

Lemma 3.1. *The direct product is a product in* Mod_R *in the category-theoretic sense, and the direct sum is a coproduct.*

Definition. Let *R* be a ring, *M* a right *R*-module, and *N* a left *R*-module. The **tensor product** $M \otimes_R N$ is the abelian group obtained as follows. Denote by $Fr(M \times N)$ the free abelian group with generators pairs (m, n) with $m \in M$, $n \in N$. Then

 $M \otimes_R N$ is the quotient of $Fr(M \times N)$ with respect to an equivalence relation ~ given by:

- $(m_1 + m_2, n) \sim (m_1, n) + (m_2, n)$
- $(m, n_1 + n_2) \sim (m, n_1) + (m, n_2)$
- $(m.r,n) \sim (m,r.n)$

We denote the equivalence class of (m, n) in $M \otimes_R N$ by $m \otimes n$.

Proposition 3.2. In the context of the previous definition, let T be an abelian group. Denote by Bil(M, N; T) the set of all bilinear homomorphisms $f: M \times N \to T$ with f(m.r, n) = f(m, r.n). Then there is a natural isomorphism

$$\operatorname{Bil}(M,N;T) \cong \operatorname{Hom}_{\mathbb{Z}}(M \otimes_{\mathbb{R}} N,T).$$

Definition (and lemma). An *R*-module *M* is called **projective** if it satisfies the following equivalent conditions:

(1) For each diagram in Mod_R

with exact row, a lift (dotted arrow) exists such that the resulting diagram commutes.

- (2) There is an *R*-module *N* such that $M \oplus N$ is free.
- (3) Every shot exact sequence $0 \rightarrow N_1 \rightarrow N_2 \rightarrow M \rightarrow 0$ splits.
- (4) The functor Hom_R(M, −) maps exact sequences to exact sequences (the functor "is exact").

Lemma 3.3. Let $0 \rightarrow N' \rightarrow N \rightarrow N'' \rightarrow 0$ be an exact sequence of right *R*-modules, and let *M* be a left *R*-module. Then the sequence of abelian groups

$$N' \otimes_R M \to N \otimes_R M \to N'' \otimes_R M \to 0$$

is exact. Let $0 \rightarrow N' \rightarrow N \rightarrow N'' \rightarrow 0$ *be an exact sequence of left R-modules, and let M be another left R-module. Then the sequence of abelian groups*

$$0 \to \operatorname{Hom}_R(N'', M) \to \operatorname{Hom}_R(N, M) \to \operatorname{Hom}_R(N', M)$$

is exact.

Definition. A left *R*-module *M* is called **flat** if the functor $-\otimes_R M$ from right *R*-modules to abelian groups is exact. A right *R*-module is flat if the functor $M \otimes_R -$ from left *R*-modules to abelian groups is exact.

Lemma 3.4. Free modules are projective. Projective modules are flat. Not every flat module is projective, and not every projective module is free.

4. RESOLUTIONS AND DERIVED FUNCTORS

Definition. Let *R* be a ring. A nonnegatively graded chain complex *P*_• of *R*-modules together with a map $\epsilon P_0 \rightarrow M$ (the "augmentation") is called a **projective resolution** of *M* if

• For every $i \ge 0$, P_i is projective;

• The extended chain complex $\cdots \rightarrow P_1 \rightarrow P_0 \xrightarrow{\epsilon} M$ is exact.

Proposition 4.1. Every *R*-module *M* has a projective resolution.

Corollary 4.2. If *R* is a principal ideal domain then every *R*-module has a projective resolution of length 2:

$$0 \rightarrow P_1 \rightarrow P_0 \rightarrow M \rightarrow 0$$

Definition. Let C_{\bullet} , D_{\bullet} be nonnegatively graded chain complexes of *R*-modules and let $f, g: C_{\bullet} \to D_{\bullet}$ be two chain maps. A **chain homotopy** from f to g is a sequence of *R*-linear maps $h_n: C_{n-1} \to D_n$ such that

$$g - f = h \circ \partial^{C} + \partial^{D} \circ h$$

If such a chain homotopy exists, we call f and g **chain homotopic** and write $f \simeq g$.

If $f: C_{\bullet} \to D_{\bullet}$ and $g: D_{\bullet} \to C_{\bullet}$ are chain maps with chain homotopies $\mathfrak{g} \circ f \simeq \operatorname{id}_{C_{\bullet}}$ and $f \circ g \simeq \operatorname{id}_{D_{\bullet}}$, we call f and g chain homotopy equivalences and the chain complexes C_{\bullet} and D_{\bullet} chain homotopy equivalent.

Proposition 4.3. If $f \simeq g$ then $f_* = g_* \colon H_*(C_{\bullet}) \to H_*(D_{\bullet})$.

Theorem 4.4. Let $f: M \to N$ be a morphism of *R*-modules, $P_{\bullet} \to M$ a chain complex where all P_i are projective, and $N_{\bullet} \to N \to 0$ be an exact complex. Then

(1) The exists a chain map $f_{\bullet}: P_{\bullet} \to N_{\bullet}$ making the following ladder commute:

(2) Any two such extensions f_{\bullet} , g_{\bullet} are chain homotopic.

Corollary 4.5. Any two projective resolutions of M are chain homotopy equivalent.

Definition. Let *R*, *S* be two rings and *F* : $Mod_R \rightarrow Mod_S$ a (covariant or contravariant) functor. We call *F* **additive** if the induced map on Hom-sets

 $\operatorname{Hom}_{R}(M, N) \xrightarrow{F} \operatorname{Hom}_{S}(F(M), F(N))$ (resp. $\operatorname{Hom}_{S}(F(N), F(M))$)

is a homomorphism of abelian groups.

Let F be an additive covariant functor as above. Then we call F

- left exact if $0 \to F(M') \to F(M) \to F(M'')$ is exact;
- right exact if $F(M') \rightarrow F(M) \rightarrow F(M'')$ is exact;
- **exact** if it is right and left exact, i. e. if $0 \to F(M') \to F(M) \to F(M'') \to 0$ is exact

for all choices of exact sequences $0 \rightarrow M' \rightarrow M \rightarrow M'' \rightarrow 0$ of *R*-modules. Similarly, if *F* is contravariant, we call it

- left exact if $0 \to F(M'') \to F(M) \to F(M')$ is exact;
- right exact if $F(M'') \rightarrow F(M) \rightarrow F(M')$ is exact;
- **exact** if it is right and left exact, i. e. if $0 \to F(M') \to F(M) \to F(M') \to 0$ is exact

for all choices of exact sequences $0 \to M' \to M \to M'' \to 0$ of *R*-modules.

$$(L_nF)(N) = H_n(F(P_\bullet)).$$

Similarly, if *F* is a contravariant left exact functor, define the *n* **right derived functor** $R^nF: \operatorname{Mod}_R \to \operatorname{Mod}_S$ by

$$(R^{n}F)(N) = H^{n}(F(P_{\bullet})).$$

This is independent of the choice of resolution and extends to a functor by defining it on morphisms as follows: if $f: M \to M'$ is a morphism of *R*-modules, extend it to a morphism $f_{\bullet}: P_{\bullet} \to P'_{\bullet}$ by Thm. 4.4 and set

$$L_n(F)(f) = H_n(F(f_{\bullet}));$$

similarly for right derived functors.

Lemma 4.6. If *F* is covariant right exact then $L_0F = F$. If *F* is contravariant left exact then $R^0F = F$.

Lemma 4.7. If R is a principal ideal ring and $F: Mod_R \to Mod_S$ a right exact covariant or left exact contravariant functor. Then $L_nF = 0$ (resp. $R^nF = 0$) if $n \ge 2$.

Lemma 4.8. Let *F* be a covariant left exact functor. Then $L_n F = 0$ for all $n \ge 1$ if and only if *F* is exact.

Definition. Let *R* be a ring, *M* a right *R*-module, and *N* a left *R*-module. Define $\operatorname{Tor}_{n}^{R}(M, N)$ to be the *n*th left derived functor of the functor $- \bigotimes_{R} N \colon_{R} \operatorname{Mod} \to \operatorname{Ab}$, applied to *M*:

$$\operatorname{Tor}_{n}^{R}(M, N) = [L_{n}(-\otimes_{R} N)](M).$$

Let *M* and *N* be left modules. Define $\text{Ext}_{R}^{n}(M, N)$ to be the *n*th right derived functor of the functor $\text{Hom}_{R}(-, N)$, applied to *M*:

$$\operatorname{Ext}_{R}^{n}(M,N) = [R^{n}\operatorname{Hom}(-,N)](M)$$

Proposition 4.9. (symmetric of Tor) The functor Tor_n^R coincides with the nth left derived functor of the functor $M \otimes_R - : \operatorname{Mod}_R \to \operatorname{Ab}$, applied to N:

$$\operatorname{Tor}_{n}^{R}(M, N) = [L_{n}(M \otimes_{R} -)](N).$$

5. Homology of spaces

Definition. Denote by Top the category of topological spaces and continuous maps. We also write Top_{*} for the category of **pointed spaces**. Its objects are pairs (X, x_0) where X is a topological spaces and $x_0 \in X$. Morphisms from (X, x_0) to (Y, y_0) in Top_{*} are continuous maps $f: X \to Y$ such that $f(x_0) = y_0$.

Definition (recollection). Two maps f, $g: X \to Y$ are called **homotopic** ($f \simeq g$) if there exists a **homotopy** between them, i.e. a map $H: X \times [0,1] \to Y$ with H(x,0) = f(x) and H(x,1) = g(x) for all $x \in X$. We call two spaces X and Y **homotopy equivalent** if there are maps $f: X \to Y$ and $g: Y \to X$ such that $g \circ f \simeq id_X$ and $f \circ g \simeq id_Y$.

Definition. Let *X* be a space. Its **(unreduced) cone** is the space

$$CX = X \times [0,1] / \sim,$$

where $(x, 1) \sim (x', 1)$ for all $x, x' \in X$. If x_0 is a fixed base point of X, we also denote its **reduced cone** by $C^{\text{red}}X$; it is defined by

$$CX = X \times [0,1]/sim$$
,

where $(x, 1) \sim (x', 1)$ as before but also $(x_0, t) = (x_0, t')$ for all $t, t' \in [0, 1]$.

Lemma 5.1. A map $f: X \to Y$ is homotopic to a constant map ("null-homotopic") iff it extends to a map $\tilde{f}: CX \to Y$ from the unreduced cone on X to Y.

A pointed map $f: (X, x_0) \to (Y, y_0)$ is homotopic to the constant map with value y_0 via a homotopy that does not move x_0 iff it extends to a map $\tilde{f}: C^{\text{red}}X \to Y$ from the reduced cone on X to Y.

Definition. Given a map $f: A \to X$, define its **(unreduced) mapping cone** by $C_f = (A \times [0,1] \sqcup X) / \sim$,

where $(a, 1) \sim (a', 1)$ for all a, $a' \in A$ and $(a, 0) \sim f(a)$ for $a \in A$. Similarly, if f is a pointed map with $f(a_0) = x_0$, the **reduced mapping cone** C_f^{red} is obtained by adding

$$(a_0,t) \sim (a_0,t') \sim x_0$$

to the equivalence relation, for all $t, t' \in [0, 1]$.

Lemma 5.2. Let $f: A \to X$, $g: X \to Y$ be maps. Then g extends to $\tilde{g}: C_f \to Y$ iff the composite $g \circ f$ is homotopic to a constant map.

If all maps are pointed then g extends to $\tilde{g} \colon C_f^{\text{red}} \to Y$ iff the composite $g \circ f$ is homotopic to the constant map with value y_0 via a homotopy that does not move x_0 .

Definition. The **unreduced suspension** *SX* of a space *X* is the unreduced mapping cone of the unique map $X \rightarrow *$; the **reduced suspension** ΣX of a pointed space *X* is the reduced mapping cone of the unique pointed map $X \rightarrow *$.

Remark 5.3. For "good" spaces *X* and base points $x_0 \in X$, the quotient maps $CX \to C^{\text{red}}X$, $SX \to \Sigma X$, and, for based maps $A \to X$, $C_f \to C_f^{\text{red}}$, are homotopy equivalences. "Good" here means "well-pointed", which is implied for instance if x_0 has a contractible neighborhood in *X*.

5.2. The Eilenberg-Steenrod axioms. Let *R* be a ring, *A* an *R*-module, and

 H_n : Top \rightarrow Mod_R

be a sequence of functors. We write $\tilde{H}_n(X) = \ker(H_n(X) \to H_n(*))$, where the map is induced by the unique map $X \to *$.

Then $(H_n)_{n \in \mathbb{Z}}$ is called a **homology theory with coefficients in** *A* if the following axioms hold:

homotopy: if $f \simeq g$ then $H_n(f) = H_n(g)$ for all $n \in \mathbb{Z}$.

additivity: if $X = \coprod_{i \in I} X_i$ then $\bigoplus_{i \in I} H_n(X_i) \cong H_n(X)$; the isomorphism is given by the canonical inclusions $X_i \hookrightarrow X$.

dimension:
$$H_n(*) = \begin{cases} 0; & n \neq 0 \\ A; & n = 0. \end{cases}$$
 In particular, $H_n(X) \cong \tilde{H}_n(X)$ for $n \neq 0$.

exactness: Let $f: A \to X$ be a map and $g: X \to C_f$ be the standard inclusion. Then there is a natural long exact sequence

$$\cdots \to H_n(A) \xrightarrow{f_*} H_n(X) \xrightarrow{g_*} \tilde{H}_n(C_f) \to H_{n-1}(A) \to \cdots$$

Mayer-Vietoris: Let $X = U \cup V$, where U and V are open subsets of X, and $Z = U \cap V$. Then there is a long exact sequence

$$\cdots \to H_n(Z) \xrightarrow{\iota_* - j_*} H_n(U) \oplus H_n(V) \xrightarrow{p_* + q_*} H_n(X) \to H_{n-1}(Z) \to \cdots,$$

where the map $i: Z \hookrightarrow U$, $j: Z \hookrightarrow V$, $p: U \hookrightarrow X$, $q: V \hookrightarrow X$ are all the standard inclusions.

Theorem 5.4. For every ring R and every R-module A, there exists (up to equivalence of functors) precisely one homology theory with coefficients in A.

5.3. Beginning calculations. For simplicity, let R = Z, A = Z.

: :

Lemma 5.5. If X is discrete then
$$H_n(X) \cong \begin{cases} 0; & n \neq 0 \\ \bigoplus_{x \in X} \mathbf{Z}; & n = 0. \end{cases}$$

Lemma 5.6. Denote by S^k the standard k-dimensional sphere. Then

$$\tilde{H}_n(\mathbf{S}^k) \cong \begin{cases} 0; & n \neq k \\ \mathbf{Z}; & n = k. \end{cases}$$

Lemma 5.7. For any pointed space X, $H_{n+1}(\Sigma X) \cong \tilde{H}_n(X)$.

Lemma 5.8. Let \mathbf{D}^{n+1} be the (n + 1)-dimensional disk, which has \mathbf{S}^n as boundary. There is no continuous function $\mathbf{D}^{n+1} \to \mathbf{S}^n$ which is the identity, or even homotopic to the identity, on \mathbf{S}^n .

Corollary 5.9 (Brouwer's fixed point theorem). *Every continuous self-map of* \mathbf{D}^n *has a fixed point.*

5.4. **Mapping degrees.** A map $f : \mathbf{S}^n \to \mathbf{S}^n$ gives a homomorphism of homology groups $H_n(\mathbf{S}^n) \cong \mathbf{Z}$, so it's multiplication by a number *d*, called the mapping degree of *f*, deg(*f*).

Lemma 5.10. If $f : \mathbf{S}^n \to \mathbf{S}^n$ is homotopic to a constant map then $\deg(f) = 0$.

Lemma 5.11. deg(id) = 1

Lemma 5.12. $\deg(f \circ g) = \deg(f) \deg(g)$.

Lemma 5.13. *If* $f \in O(n+1)$ *then* $\deg(f) = \det(f)$.

Corollary 5.14. The map $x \mapsto -x$ on \mathbf{S}^n has degree $(-1)^{n+1}$. (This map is called the *antipodal map.*)

Corollary 5.15. If $f: \mathbf{S}^n \to \mathbf{S}^n$ has no fixed points then deg $f = (-1)^{n+1}$.

Theorem 5.16 (Hairy ball theorem). Let *n* be even and $f: \mathbf{S}^n \to \mathbf{R}^{n+1}$ be a continuous map such that $f(x) \perp x$ for all *x*. Then f(x) = 0 for some $x \in \mathbf{S}^n$.