Department of mathematics
KTH

Program for the course Discrete Mathematics, SF2736 (Ed. 1) fall 2013.

Teacher and examiner:

Olof Heden
Lindstedtsvägen 25, office 3641
Tel: $7906296(+46(0) 730547$ 891)
e-mail: olohed@math.kth.se
Textbook: N.L. Biggs: Discrete Mathematics (Second edition).
Syllabus: See the plan for the lectures on the next page (Edition 1).
Examination: A written examination will take place on January 17 at 08.00 to 13.00. The examination consists of ten problems divided into three parts. Part I consists of five problems, Part II consists of three problems. Part III consists of two problems that are of more complex nature than those of Part I and Part II. To pass the exam it is sufficient to solve the first five problems, but to get the highest grade it is necessary to further solve at least one of the problems of Part III, and all problems of Part II. The grades will be A, B, C, D and E for passing. Furthermore, Fx will imply a possibility to make a supplementary exam, shortly after the original exam, in order to get the grade E.

Homework: There will be five voluntary homeworks that have to be delivered by the students to the examiner at certain terms. Each correct homework will give one bonus point at the final exam and added to the points of part I in the exam

Schedule for the lectures

Day		Content	Chapter
$4 / 11$	1	A Diophantine equation and prime number factorizations	$1.5-1.7$
$6 / 11$	2	The fundamental theorem of arithmetics, modular arithmetic	$1.8,6.1$
$7 / 11$	3	The ring Z_{n} and the theorems of Euler and Fermat	$6.2-6.3$
$8 / 11$	4	Some applications: RSA and Chinese reminder theorem	
$11 / 11$	5	Problem session	
$13 / 11$	6	Relations, equivalence relations and partial orders	5.2
$14 / 11$	7	Functions, the pigeon hole principle, cardinality	$2.1-2.5$
$15 / 11$	8	Problem session	$4.1-4.2,3.1,3.4-3.5$
$18 / 11$	9	Combinatorics, multinomial coefficients	$4.3,5.1-5.3$
$19 / 11$	10	The binomial theorem, partitions and Stirling numbers	$3.3,4.4-4.5$
$20 / 11$	11	The principle on inclusion exclusion, the Moebius inversion	$13.1-13.4$
$25 / 11$	12	Problem session	$13.5-13.8$
$27 / 11$	13	Groups, elementary facts and examples	$3.6,5.5-5.6$
$28 / 11$	14	Subgroups, cosets and the theorem of Lagrange	$14.1-14.4$
$29 / 11$	15	Permutations	$17.1-17.4$
$2 / 12$	16	Problem session	$18.4,19.1-19.5$
$4 / 12$	17	The lemma of Burnside and counting	
$5 / 12$	18	Error correcting codes	$8.1-8.7$
$6 / 12$	19	Generating functions and partition of positive integers	
$9 / 12$	20	Problem session	$10.1-10.6$
$10 / 12$	21	Graphs, Eulerian and Hamiltonian graphs, colorings	$11.1-11.4$
$11 / 12$	22	Planar graphs	
$13 / 12$	23	Bipartite graphs and matchings	
$16 / 12$	24	The max-flow min-cut theorem	
$18 / 12$	25	Problem session	
$19 / 12$	26	Revision	
$20 / 12$	27	Lecture in reserve, or revision	
$17 / 01$		Exam 08.00-13.00	

