Problem session November 15, SF2736, fall 13. Please prepare!

1. Is the following information sufficient to find the relation \mathcal{R} :
2. The relation \mathcal{R} is an equivalence relation on $\mathcal{M}=\{1,2,3,4,5,6\}$.
3. $\{(1,2),(2,3),(2,4),(5,6)\} \subseteq \mathcal{R}$.
4. $(2,6) \notin \mathcal{R}$.
5. Let $M=\{1,2,3,4,5,6,7\}$. Describe all equivalence relations \mathcal{R} on M such that

$$
\{(1,5),(1,4),(2,3),(3,6)\} \in \mathcal{R} .
$$

3. What is the mistake in the following proof for that a relation \mathcal{R} which is symmetric and transitive must be reflexive: If $a \mathcal{R} b$ then by symmetry $b \mathcal{R} a$ and hence by transitivity $a \mathcal{R} b$ and $b \mathcal{R} a$ implies that $a \mathcal{R} a$
4. Assume that $f: A \rightarrow B$ and $g: B \rightarrow A$ are such that

$$
(g \circ f)(x)=x \quad \text { for all } \quad x \in A
$$

Does this imply that f and g, respectively, are either injective, surjective or bijective?
5. (a) Let $f: A \rightarrow B, g: B \rightarrow C$ and $h: C \rightarrow D$. Is it always true that for every $x \in A$

$$
((h \circ g) \circ f)(x)=(h \circ(g \circ f))(x) .
$$

(b) Find two functions $f: A \rightarrow A$ and $g: A \rightarrow A$ such that

$$
f \circ g \neq g \circ f .
$$

(c) Show that if $f: A \rightarrow B$ and $g: B \rightarrow C$ are bijective functions then the function $g \circ f: A \rightarrow C$ is a bijective function.
6. (a) Show that a union of any finite family of countable infinite sets is a countable infinite set.
(b) Can the union of a countable infinite family of countable sets be countable infinite.
(c) Is the set of bijective maps from Z^{+}to Z^{+}an infinite countable set?
7. Assume that A is a given countable infinite set and let B be the set of all real numbers x that are solutions to some polynomial equation

$$
a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}=0,
$$

where $a_{i} \in A$, for $i=0,1, \ldots, n$. Is the set B countable infinite?
8. Let S be a set of five positive integers the maximum of which is at most 9 . Show that the sums of the elements in all the nonempty subsets of S cannot all be distinct.
9. Show that to any sequence $a_{1}, a_{2}, \ldots, a_{p+1}$ of $p+1$ positive integers there exists at least one subsequence

$$
a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{t}},
$$

such that

$$
a_{i_{1}}+a_{i_{2}}+\ldots+a_{i_{t}} \equiv 0 \quad(\bmod p) .
$$

