Problem session November 15, SF2736, fall 13. Please prepare!

- 1. Is the following information sufficient to find the relation \mathcal{R} :
 - 1. The relation \mathcal{R} is an equivalence relation on $\mathcal{M} = \{1, 2, 3, 4, 5, 6\}$.
 - 2. $\{(1,2),(2,3),(2,4),(5,6)\}\subseteq \mathcal{R}$.
 - 3. $(2,6) \notin \mathcal{R}$.
- 2. Let $M = \{1, 2, 3, 4, 5, 6, 7\}$. Describe all equivalence relations \mathcal{R} on M such that $\{(1, 5), (1, 4), (2, 3), (3, 6)\} \in \mathcal{R}$.
- 3. What is the mistake in the following proof for that a relation \mathcal{R} which is symmetric and transitive must be reflexive: If $a\mathcal{R}b$ then by symmetry $b\mathcal{R}a$ and hence by transitivity $a\mathcal{R}b$ and $b\mathcal{R}a$ implies that $a\mathcal{R}a$
- 4. Assume that $f: A \to B$ and $g: B \to A$ are such that

$$(g \circ f)(x) = x$$
 for all $x \in A$.

Does this imply that f and g, respectively, are either injective, surjective or bijective?

5. (a) Let $f:A\to B,\ g:B\to C$ and $h:C\to D.$ Is it always true that for every $x\in A$

$$((h \circ g) \circ f)(x) = (h \circ (g \circ f))(x) .$$

(b) Find two functions $f: A \to A$ and $g: A \to A$ such that

$$f \circ g \neq g \circ f$$
.

- (c) Show that if $f:A\to B$ and $g:B\to C$ are bijective functions then the function $g\circ f:A\to C$ is a bijective function.
- 6. (a) Show that a union of any finite family of countable infinite sets is a countable infinite set.
 - (b) Can the union of a countable infinite family of countable sets be countable infinite.
 - (c) Is the set of bijective maps from Z^+ to Z^+ an infinite countable set?
- 7. Assume that A is a given countable infinite set and let B be the set of all real numbers x that are solutions to some polynomial equation

$$a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n = 0,$$

where $a_i \in A$, for i = 0, 1, ..., n. Is the set B countable infinite?

- 8. Let S be a set of five positive integers the maximum of which is at most 9. Show that the sums of the elements in all the nonempty subsets of S cannot all be distinct.
- 9. Show that to any sequence $a_1, a_2, ..., a_{p+1}$ of p+1 positive integers there exists at least one subsequence

$$a_{i_1}, a_{i_2}, \ldots, a_{i_t},$$

such that

$$a_{i_1} + a_{i_2} + \ldots + a_{i_t} \equiv 0 \pmod{p}.$$