
Matematiska Institutionen
KTH

Solutions of homework number 1 to SF2736, fall 2013.

Please, deliver this homework at latest on Monday, November 18.
The homework must be delivered individually, and, in general, just hand-

written notes are accepted. You are allowed to discuss the problems with your
classmates, but you are not allowed to deliver a copy of the solution of another
student.

1. (0.1p) The integer x = 92 solves the two congruences x ≡ 12(mod 20)
and x ≡ −4(mod 24). Find all other solutions.

Solution. If x′ is another solution then{
x′ = 92 + 20s
x′ = 92 + 24t

for some integers s and t, and vice versa. From the system above we get
that

20s = 24t.

Necessary is thus that s = 6k and t = 5k. It is also sufficient as then

x′ = 92 + 120k

will be a solution.

2. (0.2p) Find necessary and sufficient conditions for the integers a1 and a2
such that the two congruences x ≡ a1(mod q1) and x ≡ a2(mod q2) are
simultaneously solvable.

Solution. An integer x solves the first congruence if and only if

x = a1 + sq1

for some integer s. For some such integer s = s0 we get that x = a1 +s0q1
also will solve the second congruence if and only if

a1 + s0q1 = a2 + t0q2

for some integer t0, or equivalently

a2 − a1 = s0q1 − t0q2.

This Diophantine equation has a solution if and only if gcd(q1, q2) divides
a2 − a1, which thus is our answer.
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3. Let p be a prime number. The elements in the direct product

Zp
n = Zp × Zp × · · · × Zp,

can be regarded as vectors with scalars in Zp (instead of the real numbers
as scalars). Defining addition of vectors and multiplication with scalars in
the traditional way, Zn

p becomes a vector space, that we denote by V (n, p).
These so called finite vector spaces are important in many applications
used in real world. Linear independence, subspace and dimension are
concepts that can be defined in the same way as they are defined in real
vector space.

(a) (0.1p) Find the number of 1-dimensional subspaces of V (7, 2).

Solution. A 1-dimensional space L is spanned by one single vector
ē and consists of the vectors in the set

L = {λē | λ ∈ Zp},

a set with p − 1 non-zero vectors. Any two distinct 1-dimensional
subspaces of a vector space intersects in the zero vector, and any
vector v̄ belongs to at least one 1-dimensional subspace. Hence the
number of 1-dimensional subspaces in the finite vector space V (n, p)
is equal to

pn − 1

p− 1
.

In the case under consideration, i.e., n = 7 and p = 2, the number of
1-dimensional subspaces thus is 127.

(b) (0.2p) Find the number of 2-dimensional subspaces of V (n, p).

Solution. We count the number of candidates for ordered basis of a
2-dimensional subspace L. So the basis

ē1 = (1, 0, 0, . . . , 0) ē2 = (0, 1, 0, . . . , 0)

and the basis

f̄1 = (0, 1, 0, . . . , 0) f̄2 = (1, 0, 0, . . . , 0)

for L will be counted as two distinct ordered basis in this enumera-
tion.

We can choose the first basis vector v̄ in pn − 1 ways as we can take
any non-zero vector. The next vector w̄ can be chosen to be any
vector not belonging to the linear span of v̄. Thus w̄ can be chosen
in (pn − 1)− (p− 1) distinct ways. So in total there are

(pn − 1)(pn − p)
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distinct ordered selection of two linearly independent vectors in V (n, p).

Now the number of distinct ordered basis for any 2-dimensional sub-
space L, is, by reasoning as above, equal to

(p2 − 1)(p2 − p)

Each ordered set of two linearly independent vectors span a unique
two dimensional space. If N denotes the number of 2-dimensional
spaces we thus get

(p2 − 1)(p2 − p)N = (pn − 1)(pn − p).

which simplifies to

Answer:

N =
(pn − 1)(pn−1 − 1)

(p2 − 1)(p− 1)
.

(c) (0.2) Consider the space V (4, 5). Find the dimension of the kernel of
the linear map represented by the matrix

1 1 1 1
0 2 1 2
0 1 3 2
2 4 3 3


in the “standard” basis.

Solution. We denote the matrix above by A. A vector x̄ = (x1, x2, x3, x4)
belongs to the kernel of the given linear map if and only if Ax̄T = 0̄T .
To find the kernel we thus can solve the corresponding linear system
of equations, by using the traditional Gauss elimination:

1 1 1 1 0
0 2 1 2 0
0 1 3 2 0
2 4 3 3 0

 ∼


1 1 1 1 0
0 2 1 2 0
0 1 3 2 0
0 2 1 1 0

 ∼


1 1 1 1 0
0 0 0 1 0
0 1 3 2 0
0 2 1 1 0


and continuing, to bring it to a row echelon form (which is not nec-
essary at all)

1 1 1 1 0
0 0 0 1 0
0 1 3 0 0
0 2 1 0 0

 ∼


1 1 1 1 0
0 0 0 1 0
0 1 3 0 0
0 0 0 0 0

 ∼


1 1 1 1 0
0 1 3 0 0
0 0 0 0 0
0 0 0 1 0


The kernel is thus the linear span

ker(A) = span{(2, 2, 1, 0)}.

So the dimension of the kernel is equal to one. (Alternatively: The
elementary row operations above give that the matrix has rank 3.
Thus its null-space has dimension 4− 3.)
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(d) (0.2p) Find the number of 3×3-matrices A with elements in Zp, such
that the determinant of A is non-zero, (that is, p divides det(A)).

Solution. Elementary row operations do not change the linear span
of the rows of a matrix, as in the real case. We may thus conclude,
as in the real case, that the determinant is non-zero if and only if
the rows of the matrix are linear independent. We now count the
number of ordered sets of three linear independent vectors, row no 1,
row no. 2 and row no 3, in V (3, p).

Row no 1 can be chosen in p3− 1 ways, just take any of the non-zero
vectors, denote it by r̄1. Row no. 2 cannot belong to the linear span
span{r̄1}, which contains p− 1 non-zero vectors, but can be equal to
any of the remaining (p3 − 1)− (p− 1) vectors. So r̄2 can be chosen
in p3 − p distinct ways. For the third row we can just takevectors r̄3
such that

r̄3 6∈ span{r̄1, r̄2},

a subspace of dimension 2, which contains p2 − 1 non-zero vectors.
Any such r̄3 will accomplish the set of rows to a set of three linearly
independent vectors. Thus

Answer: (p3 − 1)(p3 − p)(p3 − p2), that is,

p1+2(p3 − 1)(p2 − 1)(p− 1).

(It is thus easy to generalize this formula. (An extra voluntary home-
work!)

4


