Matematiska Institutionen
KTH

Solution to problem 8b of the typical exam, fall 2013.

Let H and K be subgroups of the abelian group G. We prove that for any two elements a and b of G such that $(a+H) \cap(b+K) \neq \emptyset$ it is true that

$$
|(a+H) \cap(b+K)|=|H \cap K| .
$$

Then it follows that the size of the given intersection divides the size of G, (as $H \cap K$ is a subgroup of G.)

Assume $h_{0}, h \in H$ and $k_{0}, k \in K$ are such that

$$
\left\{\begin{array}{l}
a+h_{0}=b+k_{0} \\
a+h=b+k
\end{array}\right.
$$

Then

$$
h_{0}-h=k_{0}-k=g \in H \cap K
$$

Consequently

$$
h=h_{0}-g \in h_{0}+H \cap K, \quad \text { and } \quad k=k_{0}-g \in k_{0}+H \cap K .
$$

On the other hand, if $g \in H \cap K$, and $a+h_{0}=b+k_{0}$, then also

$$
a+h_{0}+g=b+k_{0}+g
$$

where $h_{0}+g \in H$ and $k_{0}+g \in K$. Thus we can conclude that

$$
(a+H) \cap(b+K)=\left\{a+h_{0}+g \mid g \in H \cap K\right\} .
$$

