Self-Similarity in Singularity-Formation
The (rather complicated) non-linear second-order ODE (a > 1)
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arises when studying singularity formation for closed curves moving in the plane in

such a way that (locally) their height y(t, x), as a function of x, and time ¢, satisfies
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where - denotes " and ’ denotes e this can be verified by inserting the Ansats

y(t,x) = yo — £+ £ (ramys ) + - 3)
into (2) and convincing oneself that the terms remaining after using (1) are of higher
order in

t = ty—t (going to zero from above; i.e. being > 0 and - 0)

compared to those leading to (1).



- Show that if h(z) satisfies the (much simpler, first order) equation
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,it also solves (1).

- Solve (4) via
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in terms of a (to be determined) function v(z).

-Derive that
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and deduce the behavior of v for z » 0 and z —» +o.

What does that imply for the asymptotic behaviour of h(z) ?

-Show that for « = 2 (4) is solved by
G
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-Verify that if h satisfies (1), so does
h(z) := c*h(%/c)

and that
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reduces (1) to a first-order ODE for f.
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