Institutionen för matematik

KTH

Chaotic Dynamical Systems, Fall 2014 Michael Benedicks

Homework assignment 2

This exercise set is due October 17, 2014

- 1. (Devaney p. 93, 2) Let $E_{\lambda}(x) = \lambda e^{x}$. Determine the phase portrait for E_{λ} for $\lambda > 0$.
- 2. (Devaney p. 93, 3) Consider E_{λ} as in the previous excercise but for $\lambda < 0$. Prove that E_{λ} has a unique fixed point that is attracting for $0 > \lambda > -e$ and is repelling for $\lambda < -e$.
- 3. (Devaney p. 93, 4)
 - a) Prove that E_{λ}^2 is convex for x such that $E_{\lambda}'(x) > -1$ and concave if $E_{\lambda}'(x) < -1$.
 - b) Consider $E_{\lambda}(x)$ for x < 0. Use the information from a) to prove that E_{λ} has a unique attracting fixed point if $-e < \lambda < 0$, and that for $\lambda < -e$ it has a repelling fixed point coexisting with a stable two-orbit.
- 4. Define a metric on $\Sigma_N = \{ \mathbf{s} = (s_k)_{k=0}^{\infty} \mid s_k \in 1, \dots, N \}$ by

$$d_N(\mathbf{s}, \mathbf{t}) = \sum_{k=0}^{\infty} \frac{|s_k - t_k|}{N^k}.$$

- a) Prove that d_N is a metric.
- b) Prove that if $s_i = t_i$ for i = 0, ..., k then $d_N(\mathbf{s}, \mathbf{t}) \leq 1/N^k$. Similarly if $d_N(\mathbf{s}, \mathbf{t}) < 1/N^k$, then $s_i = t_i$ for $i \leq k$.

For symbols s and t in the symbol space $\{1, 2, ..., N\}$, define the discrete metric by

$$\delta(s,t) = \begin{cases} 0 \text{ if } s = t\\ 1 \text{ if } s \neq t. \end{cases}$$

Define a metric d' on Σ_N by

$$d'(\mathbf{s}, \mathbf{t}) = \sum_{k=0}^{\infty} \frac{\delta(s_i, t_i)}{3^i}$$

c) Prove that the metrics d_N and d' are not equivalent, i.e. that there do not exist constants c and C so that

$$c d_N(\mathbf{s}, \mathbf{t}) \le d'(\mathbf{s}, \mathbf{t}) \le C d_N(\mathbf{s}, \mathbf{t}),$$

where c and C do not depend on \mathbf{s} and \mathbf{t} .

Does one of the relations between the metrics stated above hold?

- d) State and prove a version of the statement in b) for the metric d'.
- 5. (Devaney p. 68, 5) Construct a piecewise linear map with period 2n + 1.
- 6. (Devaney p. 68, 8) Construct a map that has periodic points of period 2^j for j < l but no points of period 2^l .