Institutionen för matematik

KTH

Chaotic Dynamical Systems, Fall 2008

Michael Benedicks

Homework assignment 6, Differential Equations

1. Let f be a C^1 vector field on a neighborhood of the annulus

$$A = \{ x \in \mathbb{R}^2 : 1 \le |x| \le 2 \}.$$

Assume that f has no zeros and that f is transversal to the boundary and points inwards.

- (a) Prove that there is a closed orbit that solves $\dot{x} = f(x)$.
- (b) Show that if there are exactly 7 closed orbits of the vector field then to one of these orbits there are associated orbits that spiral towards the closed orbits from both sides.
- 2. Prove that depending on whether ad bc > 0 or ad bc < 0, the index with respect to the origin of the linear vector field is

$$f_0(x,y) = (ax + by, cx + dy)$$

is equal to ± 1 .

- 3. Assume that $f(x,y) = (f_1(x,y), f_2(x,y))$ is a C^1 vector field with an isolated critical point in $0 \in \mathbb{R}^2$ and that the derivative of f at (0,0) is the linear map in Exercise 1 above. Show that if ad bc > 0 then f has index +1 at (0,0) and if ad bc < 0 then f has index -1 in (0,0).
- 4. Let $f(z) = z^k$ where z = x + iy and z^k is the k:th power of the complex number z. Consider f as a vector field on \mathbb{R}^2 . Prove that the index of f at 0 is k.
- 5. Let $f(z) = \bar{z}^k$ where $\bar{z} = x iy$. Consider f as a vector field on \mathbb{R}^2 . Show that the index of f in 0 is -k.
- 6. Give an example of a C^{∞} vector field f in the plane that has the unit circle as the only non-trivial periodic orbit.

1

- 7. (*) Assume that f is a C^1 planar vector field and that x is a point in \mathbb{R}^2 , the orbit of which is defined and bounded for $t \geq 0$. Assume that $\omega(x)$ is not a periodic orbit or a critical point
 - (a) Show that $\omega(x)$ can be written as a disjoint union $\omega(x) = C \cup S$ where C consist of critical points and S only consist of stable and unstable manifolds or limit cycles.
 - (b) Show that the set S in the previous statement only consist of at most countably many orbits.
- 8. Assume that A is a 2×2 real matrix. Let X(x) = Ax be the linear vector field on \mathbb{R}^2 defined by A. Show that every non-wandering point of X is a critical point or a periodic orbit.