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Preface to the course.

In this course we will try to understand the main aspects of the theory of partial
differential equations (PDE). PDE theory is a vast subject with many different
approaches and subfields. We can not cover everything in one course. Some
selection has to be made. In this course we will try to achieve the following:

1: We will try to stress that the foundation of theory of PDE is basic real
analysis.

2: We will try to motivate the increasing levels of abstraction in the theory.
Our starting point will be a difficult problem, to find a solution u(x) to the
equation

∆u(x) = f(x) in some domain D
u(x) = g(x) on the boundary ∂D.

(1)

We will use the tools we have from analysis to attack the problem. But with
the tools at hand we will not be able to solve the problem in its full generality.
Instead we are going to simplify the problem to something that we can solve and
then add more and more (and more abstract) theory in order to solve the prob-
lem in its full generality. And at every step of the way we will try to motivate
the theory and why we move into the more abstract areas of mathematics.

3: We will try to introduce and motivate a priori estimates in the theory
of PDE. A priori estimates are one of the most important, most technical and
most difficult to understand part of PDE theory. Often it is not mentioned on
the masters level. But due to its importance we will introduce it and try to
understand its significance.

4: We will try to show some of the different aspects of PDE theory. In
particular, in the later parts of the course, we will discuss some functional
analysis and viscosity solutions approaches in the course.

For various reasons this course will be based on lecture notes written by
myself. I guess that only a madman would conceive to write a book in paral-
lel with giving a course on that book. Writing the course material has some
advantages. In particular for me! I get the course that I want and a course
that covers the material that I think is important. The specific contents of the
course will be whatever I put in these notes. It also have some disadvantages to
write the course book in parallel to teaching it. Writing is time consuming and
I am a terrible bad writer even under the best circumstances. Besides my lack
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vi PREFACE TO THE COURSE.

of suitability as a course book author, the manuscript will inevitable contain
many many typos.

I therefore feel that I should suggest some supporting literature that might
be red in parallel to these notes.

One of the standard PDE texts today is Lawrence C. Evans Partial Differ-
ential Equations published by the American Mathematical society. Evans’ book
is an excellent introduction to PDE theory and it covers much material that we
will not have the chance to discuss. In particular Evans’ book covers elliptic,
parabolic and hyperbolic equations of any order as well as variational calculus
and Sobolev spaces. We will focus on second order elliptic equations - but we
will go further than Evans’ book in some respects. Evans’ book could be seen
as a complement to my notes.

The next book that can be seen as a complement to this course is D. Gilbarg
and N.S. Trudingers Elliptic Partial Differential Equations of Second Order
published by Springer. Gilbarg and Trudinger’s book is an excellent PDE book
that covers much regularity theory. However, Gilbarg-Trudinger’s treatment of
the topic is very terse and I don’t think that it is suitable for a masters course.
As a complement to this course it is however a great book. It also covers much
more material than we will be able to cover in a term. One of my hopes is that
you will be able to easily understand the first six chapters of Gilbarg-Trudinger
after finishing this course.

Since the course will assume that you have a good understanding of ba-
sic analysis I would also recommend that you have an analysis book at hand.
Something at the level of Walter Rudin’s Principles of Mathematical Analysis
published by McGraw-Hill Higher Education.

The course will be defined by my notes and no other course literature is
necessary.



Chapter 1

The Laplace Equation,
some Heuristics.

One of the most fundamental partial differential equations, and also one of the
must studied object in mathematics is the Laplace equation:

Solving the laplace equation means to find a function u(x) such that for
every x ∈ D, where D is a given open set,

∆u(x) ≡
n∑
j=1

∂2u(x)

∂x2
j

= 0. (1.1)

Equation (1.1) appears in many applications. For instance (1.1) models the
steady state heat distribution in the set D. In applications it is often necessary
not only to find just any solution to ∆u(x) = 0 but a specific solution that
attains certain values on ∂D (say the temperature on the boundary of of the
domain).

Notation: We will denote open sets in Rn by D. By ∂D we mean the
boundary of D, that is ∂D = D \ D. An open connected set will be called a
domain.

Since we will always consider domains in Rn we will use x = (x1, x2, ..., xn)
to denote a vector in Rn with coordinates (x1, x2, ..., xn).

It is also of interest to solve the problem ∆u(x) = f(x) for a given function
f(x). We therefore formulate the Dirichlet problem:

∆u(x) ≡
∑n
j=1

∂2u(x)
∂x2
j

= f(x) in D ⊂ Rn

u(x) = g(x) on ∂D.
(1.2)

D is a given domain (open set in Rn that might equal Rn) and f(x) a given
function defined in D and g a given function defined on ∂D. Later on we will
have to make some assumptions on f , g and D.

Let us fix some notation before we begin to describe these equations.

1



2 CHAPTER 1. THE LAPLACE EQUATION, SOME HEURISTICS.

Definition 1.1. We say that a function u(x) is harmonic in an open set D if

∆u(x) = 0 in D.

We call the operator ∆ =
∑n
j=1

∂2

∂x2
j

the Laplace operator or the laplacian.

We will call the problem of finding a solution to (1.2) the Dirichlet problem
or at times the boundary value problem.

Our first goal will be to solve the equations (1.2).

1.1 A Naive Approach - and a motivation for
the theory ahead.

Warning: This section is an informal discussion to motivate the theory that we
will develop later. Reading this should give you a feeling that you could, if given
some time, come up with the main ideas yourself. There is nothing miraculous in
mathematics - just ordinary humans carefully following their intuition and the
mathematical method. Later we will give stringent arguments for the intuitive
ideas presented in this section.

We stand in front of a new, interesting and very difficult problem: given a
domain D and two functions f (defined on D) and g (defined on ∂D) we want
to find a function u(x) defined on D such that

∆u(x) ≡
∑n
j=1

∂2u(x)
∂x2
j

= f(x) in D ⊂ Rn

u(x) = g(x) on ∂D.
(1.3)

One should remark that the problem is extremely difficult. We may, at least
apriori, choose f (and g) in any way we want which means that for any of the
infinitively many points x0 ∈ D we want to prescribe the value of ∆u(x0) so
we have infinitely many equations that we want to solve simultaneously at the
same time as we want the solution to satisfy u(x) = g(x) for every x ∈ ∂D.

How do we start? How do we approach a new problem? We need to play
with it. Try something and see where it leads.

The easiest way to attack a new problem is to make it simpler! So let us
consider the simpler problem1

∆u(x) = 0 in Rn. (1.4)

This problem is still quite difficult. So let us simplify (1.4) further and look
for solutions u(x) that are radial, that is functions that only depend on |x|.
This should make the problem solvable - since we know how to solve differential
equations depending only on one variable.

1Remember that we are just playing with the problem now. At the end of this section we
will see that this approach leads to a theory for the equation ∆u = f in Rn. My point is that
whenever we encounter a new problem in mathematics we need to find an “in”. A way to
approach the problem and tie it into formulas. The we need to see where those formulas take
us. If we pay attention to the formulas, and if we are lucky, we will gain some understanding
of the problem. Not always the understanding we set out to find.



1.1. A NAIVE APPROACH - AND A MOTIVATION FOR THE THEORY AHEAD.3

Lemma 1.1. If ∆u(x) = 0 and u(x) is radial: u(x) = h(|x|). Then

∂h(r)

∂r2
+

(n− 1)

r

∂h(r)

∂r
= 0.

In particular

u(x) =

{ a
|x|n−2 + b if n ≥ 3

a ln(|x|) + b if n = 2
(1.5)

for some a, b ∈ R.

Proof: If we set r = |x| then we see that

∂r

∂xi
=
xi
r
⇒ ∂

∂xi
=
xi
r

∂

∂r
+ angular derivatives

and
∂2

∂x2
i

=
1

r

∂

∂r
− x2

i

r2

∂

∂r
− x2

i

r3

∂2

∂r2
+ angular part.

In particular for a radial function u(x) = h(r) we have

∂h(r)

∂xi
= h′(r)

∂r

∂xi
= h′(r)

xi
r

and
∂2h(r)

∂x2
i

= h′′(r)
x2
i

r2
+ h′(r)

(
1

r
− x2

i

r3

)
,

where we have used that
∑n
i=1 x

2
i = r2.

We may thus calculate

0 = ∆u(x) = ∆h(r) =

n∑
i=1

∂2h(r)

∂x2
i

= h′′(r)

n∑
i=1

x2
i

r2
+ h′(r)

n∑
i=1

(
1

r
− x2

i

r3

)
=

= h′′(r) +
n− 1

r
h′(r).

We have thus shown that h(r) satisfies the ordinary differential equation

0 = h′′(r) +
n− 1

r
h′(r) =

1

rn−1

∂

∂r

(
rn−1 ∂h(r)

∂r

)
. (1.6)

Multiplying (1.6) by rn−1 and integrating twice gives the desired result.
The solutions in (1.5) have a singularity, and are not differentiable, in x = 0.

So Our radial solutions only solve ∆u(x) = 0 in Rn \ {x = 0}.
We would want to analyze the singularity at the origin. If you know anything

about the theory of distributions you could consider ∆u(x) to be a distribution.
Here we will use more elementary methods to analyze the singularity. The main
difficulty with u(x) = h(|x|) as defined in (1.5) is that u isn’t differentiable
at the origin. So let us approximate u by a two times differentiable function.
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We may then analyze the approximation and use the information about the
approximated function to say something about u.

In order to simplify things somewhat we will assume that n = 3 and we will
define an approximation to u according to

uδ(x) =

{
−
(

3
8πδ −

1
8πδ3 |x|2

)
if |x| ≤ δ

−
(

1
4π

1
|x|

)
if |x| > δ.

(1.7)

Here we have chosen a = 1
4π and b = 0, the particular choice of a will be

explained later. Moreover, we have chosen the coefficients uδ so that uδ is
continuously differentiable.

Then

∆uδ(x) =

{
3

4πδ3 if |x| < δ
0 if |x| > δ.

Since we are only trying to gain an understanding of the problem we don’t care
so much about the value of ∆uδ on the set {|x| = δ}2 - the set where the second
derivatives are not defined.

In order to simplify notation somewhat we will define the characteristic
function of a set A according to

χA(x) =

{
1 if x ∈ A
0 if x /∈ A. (1.8)

Then

∆uδ =
3

4πδ3
χBδ(0)(x).

We may also translate the function and solve, for an x0 ∈ R3,

∆uδ(x− x0) =
3

4πδ3
χBδ(x0)(x). (1.9)

Notice that equation (1.3), with D = R3, is to find for each x0 ∈ R3 a function
u(x) such that ∆u(x0) = f(x0). But uδ(x−x0) accomplishes almost that when
δ is small.

In particular, givenN points x1, x2, ..., xN ∈ R3 and values f(x1), f(x2), ..., f(xN )
such that |xi − xj | > δ for i 6= j then the function

u(x) =

N∑
j=1

f(xj)
4πδ3

3
uδ(x− xj) (1.10)

2If you are really worried about it we could define uδ to be equal to n2+2n−8
32πδn−2 − n2−4

16πδn
|x|2+

n2−2n
32πδn+2 |x|4 for |x| ≤ δ. With that definition uδ becomes two times continuously differentiable
and all the analysis in the rest of this section would follow with minor changes. Also, if you
know anything about weakly differentiable functions, you will realize that uδ has weak second
derivatives in L∞ which justifies the following calculations.
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will solve

∆u(x) = ∆

 N∑
j=1

f(xj)
4πδ3

3
uδ(x− xj)

 = 3 (1.11)

=

N∑
j=1

f(xj)
4πδ3

3
δuδ(x− xj) =

{
if
x = xi

}
= f(xi).

That is, given any finite set of points x1, x2, ..., xN and values f(x1), f(x2)..., f(xN ),
we may find a function u, defined according to (1.10), such that ∆u(xi) = f(xi).

This opens up for many possibilities. Could we consider a dense set of
points {xj}∞j=1 and find a solution uN to (1.11) for the points {xj}Nj=1 and

values {f(xj)}Nj=1? Then let N → ∞ and hope that u = limN→∞ uN solves

∆u(x) = f(x) for any x ∈ R3? This might work, but will use a different
approach.

For that we need to notice that∫
D

g(x)dx ≈
∑
j

(
volume(Ωj)g(xj)

)
,

if g(x) is continuous and Ωj are a collection of disjoint sets such that D ⊂ ∪jΩj
and the diameter of Ωj is small. If we compare that to (1.10) we see that

u(x) =

N∑
j=1

f(xj)
4πδ3

3
uδ(x− xj) =

N∑
j=1

f(xj)volume(Bδ(x
j))uδ(x− xj) ≈

≈
∫
R3

f(y)uδ(x− y)dy,

we are very informal here and we can not claim that we have proved anything.
But let us, still very informally, make the following conjecture:

An informal conjecture: Let f(x) be a continuous function and δ > 0 a
small real number. Then

uδ(x) =

∫
R3

f(y)uδ(x− y)dy

should be an approximate solution to

∆uδ(x) = f(x).

Let us try to, still very informally, see if the conjecture makes sense. We
make the following calculation

|∆uδ(x)− f(x)| =
∣∣∣∣∆ ∫

R3

f(y)uδ(x− y)dy − f(x)

∣∣∣∣ =

3Here we use an important property for the laplace equation, that it is linear. We will say
more about the linearity later.
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=

{
differentiation under
the integral

}
=

=

∣∣∣∣∫
R3

f(y)∆uδ(x− y)dy − f(x)

∣∣∣∣ =

∣∣∣∣ 3

4πδ3

∫
R3

f(y)χBδ(x)(y)dy − f(x)

∣∣∣∣ =

=

∣∣∣∣∣ 3

4πδ3

∫
Bδ(x)

f(y)dy − f(x)

∣∣∣∣∣ ≤ 3

4πδ3

∫
Bδ(x)

|f(y)− f(x)| dy ≤

≤ sup
y∈Bδ(x)

|f(x)− f(y)|,

where we used that
∫
Bδ(x)

dy = 4πδ3

3 in the last step and that
∫
R3 χAg(x)dx =∫

A
g(x)dx at the end of the third line of the calculation.
If f is uniformly continuous4 then for every ε > 0 there is a δε > 0 such that

sup
y∈Bδ(x)

|f(x)− f(y)| ≤ ε for all x ∈ R3.

That is if we choose δ = δε then we have, at least informally, shown that

|∆uδ(x)− f(x)| < ε.

It appears that

u(x) = lim
δ→0

uδ(x) = lim
δ→0

∫
R3

f(y)uδ(x− y)dy =
{

informally
}

=

=

∫
R3

f(y)
1

4π|x− y|
dy

solves ∆u(x) = f(x) in R3.
We may thus make the following new conjecture

Another informal conjecture: Let f(x) be a uniformly continuous func-
tion defined in R3. Then

u(x) =

∫
R3

f(y)
1

4π|x− y|
dy (1.12)

solves ∆u(x) = f(x).

We will consider the informal conjecture as a working hypothesis to motivate
the formal theory we develop later. One can already see that we need more
assumptions on f(x) in order for the conjecture to make sense. For instance,
we need some assumption on f(x) to assure that the integral in (1.12) is well
defined.

4In our informal conjecture we just assumed continuity, but after some calculations we see
that uniform continuity is a more natural assumption. The point in playing with mathematics
is that we have the opportunity to see what assumptions we will need in the theorems we prove.
At this point we have not proved anything. But we need to understand the problem before
we can get down to the work of writing a proof.



1.1. A NAIVE APPROACH - AND A MOTIVATION FOR THE THEORY AHEAD.7

Moreover, in proving the conjecture (with whatever extra assumptions we
need) we need to be much more formal than we have been so far. In doing
mathematical research one needs to be able to take a leap in the dark and argue
informally to set up a reasonable hypothesis. And then have the technical skill
to turn that hypothesis into a stringent proof. So far we have, what I feel to
be, a reasonable hypothesis for how a solution to ∆u(x) = f(x), for uniformly
continuous f(x), should look. In the next section we will prove this.

Observe that this is just a first step in the development of the theory for the
laplace equation. Later on we will need to find methods to handle the boundary
conditions, that is to find solutions in a domain D ⊂ Rn for which the boundary
condition u(x) = g(x) on ∂D is satisfied.
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Chapter 2

The Laplace Equation in
Rn.

2.1 The fundamental solution.

In this chapter we will be much more stringent than in the previous chapter.
In particular we will take care to prove every statement that we make and to
clearly define our terms. Our goal is to prove that if f(x) is an appropriate
function in Rn then

u(x) = − 1

(n− 2)ωn

∫
Rn

f(y)

|x− y|n−2
dy if n ≥ 3 (2.1)

or

u(x) = − 1

2π

∫
Rn

f(y)

|x− y|n−2
dy if n = 2 (2.2)

solves ∆u(x) = f(x). Here ωn is the area of the unit sphere in Rn.
It is clear that we need to choose f(x) in a class of functions such that the

integrals (2.1) and (2.2) are well defined. To that end we make the following
definition.

Definition 2.1. For a continuous function f we call the closure of all the points
where f is not equal to zero the support of f . We denote the support of f by
spt(f) = {x; f(x) 6= 0}.

We will denote by Ckloc(D) the set of all functions f(x) defined on D that
are two times continuously differentiable on every compact set K ⊂ D.

We denote by Ckc (D) the set of all functions in Ckloc(D) that has compact
support. That is:

Ckc (D) =

=
{
f ∈ Ckloc(D); there exists a compact set K ⊂ Ds.t.f(x) = 0 for all x /∈ K

}
In what follows we will often use the functions− 1

(n−2)ωn
1

|x|n−2 and− 1
2π ln(|x|)

appearing in (2.1) and (2.2) so it is convenient to make the following definition.

9
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Definition 2.2. The function defined in Rn \ {0} defined by

N(x) =

{
− 1

2π ln(|x|) for n = 2
− 1

(n−2)ωn
1

|x|n−2 for n 6= 2,

where ωn is the surface area of the unit sphere in Rn, will be called either the
Newtonian potential or the fundamental solution of Laplace’s equation.

With this definition we see that (2.1) and (2.2) reduces to

u(x) =

∫
Rn
N(x− y)f(y)dy. (2.3)

Notice that N(x) is a radial function. That means that N(x) depends only
on |x|. The name fundamental solution is somewhat justified by the following
Lemma (which is essentially covered in Lemma 1.1).

Lemma 2.1. Let N(x) be the fundamental solution to Laplace’s equation then

∆N(x) = 0 in Rn \ {0}.

Proof: This follows from the calculations of Lemma 1.1.
In order to prove that ∆u(x) = f(x), where u is defined in (2.3), we need to

show that:

1. The function u(x) is well defined. That is that the integral in (2.3) is
convergent for each x.

2. That the second derivatives of u(x) are well defined. This in order to make

sense of ∆u(x) =
∑n
i=1

∂2u(x)
∂x2
i

.

3. Show that ∆u(x) = f(x).

Let us briefly reflect on these steps in turn.

1: Since the singularity of N(x − y) is integrable it should be enough to
assume that f(x) has compact support in order to assure that the integral in
(2.3) is convergent.

2: This is a more subtle point. If we naively1 differentiate twice under the
integral sign in (2.3) we see that, if we for definiteness assume that n ≥ 3,

∂2u(x)

∂x2
i

=

∫
Rn

(
1

ωn

1

|x− y|n
− n

ωn

|xi − yi|2

|x− y|n+2

)
f(y)dy.

We see that the formal expression of ∂2u(x)
∂x2
i

involves integration of the function
f(y)
|x−y|n which is not locally integrable in Rn since∫

B1(0)

1

|y|n
dy =

{
polar
coordinates

}
= ωn

∫ 1

0

1

r
dr =∞.

1By naively I mean that we do not care to verify that it is justified at this point.
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It is therefore far from certain that ∂2u(x)
∂x2
i

exists. As a matter of fact, we will have

to add new assumption in order to assure that u(x) is two times differentiable.
(See also Exercise 3 at the end of the chapter.)

3: We already have good intuition that this should be true.

In view of the second point above it seems that we need to make some extra
assumption of f(x) in order to prove that u(x) has second derivatives. Therefore
we define the following class of functions.

Definition 2.3. Let u ∈ C(D) and α > 0 then we say that u ∈ Cα(D) if

sup
x,y∈D,x6=y

|u(x)− u(y)|
|x− y|α

<∞.

We define the norm on Cα(D) to be

‖u‖Cα(D) = sup
x∈D
|u(x)|+ sup

x,y∈D,x6=y

|u(x)− u(y)|
|x− y|α

.

If u ∈ Cα(D) then we say that u is Hölder continuous in D.
We say that that u ∈ Ck(D) if u is k−times continuously differentiable on

D and

‖u‖Ck(D) =

k∑
j=0

sup
x∈D
|Dju(x)| <∞.

Moreover we say that that u ∈ Ck,α(D) if u ∈ Ck(D) and for every multiin-
dex2 β of length |β| = k

sup
x,y∈D,x6=y

|uβ(x)− uβ(y)|
|x− y|α

<∞,

where uβ = ∂|β|u
∂xβ

.

We define the norm on Ck,α(D) according to

‖u‖Ck,α(D) = ‖u‖Ck(D) + max
|β|=k

(
sup

x,y∈D,x6=y

|uβ(x)− uβ(y)|
|x− y|α

)
,

where the max is taken over all multiindexes β of length |β| = k.

We are now ready to formulate our main theorem.

Theorem 2.1. Let f ∈ Cαc (Rn) for some α > 0 and define

u(x) =

∫
Rn
N(x− ξ)f(ξ)dξ. (2.4)

Then u(x) ∈ C2
loc and satisfies

∆u(x) = f(x).

2See the appendix for an explanation of this notation.
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Proof: We will only prove the Theorem for n ≥ 3, the proof when n = 2 is
the same except for very small changes. The proof is rather long so we will split
it up into several smaller steps.

Step 1: The function u(x) in (2.4) is well defined.

Proof of step 1: We need to show that the integral
∫
Rn

f(ξ)
|x−ξ|n−2 dξ is conver-

gent for every x. Notice that the integral is generalized in two ways. First the
integrand have a singularity at x = ξ, and secondly the domain of integration
is not bounded. Therefore we need to show that

lim
ε→0,R→∞

∫
BR(x)\Bε(x)

f(ξ)

|x− ξ|n−2
dξ (2.5)

exists.
Since f(ξ) is continuous by assumption and 1

|x−ξ|n−2 is continuous for ξ 6= x

it is clear that ∫
BR(x)\Bε(x)

f(ξ)

|x− ξ|n−2
dξ

is well defined for each R, ε > 0. Moreover, since f(ξ) has compact support
there exists an R0 such that f(ξ) = 0 for every ξ /∈ BR0

(x). This means that

lim
R→∞

∫
BR(x)\Bε(x)

f(ξ)

|x− ξ|n−2
dξ =

∫
BR0

(x)\Bε(x)

f(ξ)

|x− ξ|n−2
dξ,

so the limit as R→∞ causes no difficulty.
So we only need to consider the limit as ε → 0. To that end we show that∫

BR(x)\Bε(x)
f(ξ)

|x−ξ|n−2 dξ is Cauchy in ε. That is, for each µ > 0 there exists a

δµ > 0 such that∣∣∣∣∣
∫
BR(x)\Bε2 (x)

f(ξ)

|x− ξ|n−2
dξ −

∫
BR(x)\Bε1 (x)

f(ξ)

|x− ξ|n−2
dξ

∣∣∣∣∣ < µ (2.6)

for every 0 < ε1 ≤ ε2 < δµ.
We may rewrite the left hand side in (2.6) as∣∣∣∣∣

∫
Bε2 (x)\Bε1 (x)

f(ξ)

|x− ξ|n−2
dξ

∣∣∣∣∣ ≤
≤ sup
Bε2 (x)

|f(ξ)|
∫
Bε2 (x)\Bε1 (x)

1

|x− ξ|n−2
dξ =

=

{
polar
coordinates

}
= ωn sup

Bε2 (x)

|f(ξ)|
∫ ε2

ε1

rdr ≤ ωnε
2
2

2
sup
Bε2 (x)

|f(ξ)|.

Clearly (2.6) follows with δµ = 1
2

√
2µ
ωn

. It follows that u(x) is well defined.
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Step 2: The function u(x) is C1
loc(Rn) and

∂u

∂xi
=

∫
Rn

∂N(x− ξ)
∂xi

f(ξ)dξ.

Proof of step 2: First we notice, using a similar argument as in step 1, that

wi(x) =

∫
Rn

∂N(x− ξ)
∂xi

f(ξ)dξ (2.7)

is well defined for every i = 1, 2, ..., n. We aim to show that wi(x) = ∂u(x)
∂xi

(which is what we would expect by differentiating under the integral sign). To
prove this we define uε(x) according to

uε(x) = − 1

ωn(n− 2)

∫
Rn

f(ξ)

|x− ξ|n−2
ηε(|x−ξ|)dξ =

∫
Rn
N(x−ξ)f(ξ)ηε(|x−ξ|)dξ

where ηε(|x|) ∈ C∞(Rn) is an increasing function such that η′ε(|x|) ≤ C/ε and
satisfies3

ηε(|x|) =

{
0 if |x| < ε
1 if |x| > 2ε.

}
The reason we define uε in this way is that we have no singularity in the integral
in the definition of uε. This means that we may manipulate uε with more ease
than u. In particular, since the integrand in the definition of uε is in C1

c (Rn)
and we integrate over a compact set (since f = 0 outside a compact set) with
respect to x we may use Theorem 2.3 in the appendix and differentiate under
the integral sign and conclude that uε ∈ C1

loc(Rn).
Clearly uε → u uniformly since

|u(x)− uε(x)| =
∣∣∣∣ 1

(n− 2)ωn

∫
Rn

f(ξ)

|x− ξ|n−2
dξ

∣∣∣∣ ≤
≤

supξ∈B2ε(x) |f(ξ)|
(n− 2)ωn

∣∣∣∣∣
∫
B2ε(x)

1

|x− ξ|n−2
dξ =

∣∣∣∣∣ ≤
supξ∈B2ε(x) |f(ξ)|

(n− 2)
ε2.

If we can show that ∂uε(x)
∂xi

→ wi(x) uniformly it follows that u is the uniform

limit of a sequence of C1 functions whose derivatives converge uniformly to
wi(x). It follows, from Theorem 2.2 in the appendix, that u(x) ∈ C1

loc(Rn) and

that ∂u(x)
∂xi

= wi(x) and the proof is done.

It remains to show that ∂uε(x)
∂xi

→ wi(x) uniformly. To that end we estimate∣∣∣∣∂uε(x)

∂xi
− wi(x)

∣∣∣∣ =

3Such an ηε exists. Take for instance ηε, as in Lemma 2.2 in the appendix, where η(x) =
χRn\B2ε

and χ is the characteristic function defined in (1.8).
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=

∣∣∣∣ ∂∂xi
∫
Rn
N(x− ξ)f(ξ)ηε(|x− ξ|)dξ −

∫
Rn

∂N(x− ξ)
∂xi

f(ξ)dξ

∣∣∣∣ ≤
=

{
diff. under
integral

}
=

=

∣∣∣∣ ∫
Rn

(
N(x− ξ)f(ξ)

∂ηε(|x− ξ|)
∂xi

+
∂N(x− ξ)

∂xi
f(ξ)ηε(|x− ξ|)

)
dξ−

−
∫
Rn

∂N(x− ξ)
∂xi

f(ξ)dξ

∣∣∣∣ ≤
≤
∣∣∣∣∫

Rn
N(x− ξ)f(ξ)

∂ηε(|x− ξ|)
∂xi

dξ

∣∣∣∣+ (2.8)

+

∣∣∣∣∫
Rn

∂N(x− ξ)
∂xi

f(ξ) (ηε(|x− ξ|)− 1) dξ

∣∣∣∣
where we used the triangle inequality in the last step and differentiation under
the integral is justified by Theorem 2.3.

Notice that |ηε(|x− ξ|)− 1| ≤ 1 for ξ ∈ B2ε(x) and |ηε(|x− ξ|)− 1| = 0 for

ξ /∈ B2ε(x) and that
∣∣∣∂ηε(|x−ξ|)∂xi

∣∣∣ ≤ C
ε for ξ ∈ B2ε(x) \Bε(x) and

∣∣∣∂ηε(|x−ξ|)∂xi

∣∣∣ = 0

else.
We may thus estimate (2.8) from above by

C

ε

∫
B2ε(x)\Bε(x)

|N(x− ξ)f(ξ)| dξ +

∫
B2ε

∣∣∣∣∂N(x− ξ)
∂xi

∣∣∣∣ |f(ξ)| dξ ≤

≤ sup
ξ∈B2ε(x)

|f(ξ)|
(
C

ε

∫
B2ε

1

|x− ξ|n−2
dξ + C

∫
B2ε

1

|x− ξ|n−1
dξ

)
≤

≤ C sup
ξ∈Rn

|f(ξ)|ε.4 (2.9)

We may thus conclude that ∂uε
∂xi
→ wi uniformly and that uε → u uniformly.

It follows, from Theorem 2.2, that ∂u(x)
∂xi

= wi ∈ C0
loc(Rn). Step 2 is thereby

proved.

Step 3: The function u ∈ C2
loc(Rn) and

∂2u(x)

∂xi∂xj
=

∫
BR(x)

∂2N(x− ξ)
∂xi∂xj

(f(ξ)− f(x)) dξ−f(x)

∫
∂BR(x)

∂N(x− ξ)
∂xi

νj(ξ)dA(ξ)

where BR(x) is any ball such that spt(f) ⊂ BR(x). Here νj(ξ) is the j :th
component of the exterior normal of BR(x) at the point ξ ∈ ∂BR(x) and A(ξ)
is the area measure with respect to ξ.

4Here, as is very common in PDE theory, we do not really distinguish between constants
that only depend on the dimension. We will often denote them by C - but C will often mean
different things within the same experssion. We may for instance write 2C ≤ C. By this we
mean that for any constant C0 there is another constant C1 such that 2C0 ≤ C1. But we
usually don’t the indicate that we intend different constants C0 and C1 with an index.
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Proof of step 3: Before we prove step 3, let us try to explain the idea. We

will use the same method of proof as in step 2. However, since
∣∣∣∂2N(x−ξ)
∂xi∂xj

∣∣∣ grows

like 1
|x−ξ|n as |x− ξ| → 0 which is not integrable in Rn. We can not say that∫

Rn

∂2N(x− ξ)
∂xi∂xj

f(ξ)dξ (2.10)

exists.
Since f(ξ) ∈ Cαc (Rn) we know that |f(ξ)− f(x)| ≤ C|x − ξ|α for some

constant C and α > 0. This implies that∣∣∣∣∂2N(x− ξ)
∂xi∂xj

(f(ξ)− f(x))

∣∣∣∣ ≤ C 1

|x− ξ|n
|x− ξ|α ≤ C

|x− ξ|n−α

which is integrable close to the point x = ξ. We may thus integrate∫
BR(x)

∂2N(x− ξ)
∂xi∂xj

(f(ξ)− f(x)) dξ (2.11)

for any ball BR(x). The difference between what we want to integrate (2.10)
and what we can integrate (2.11) is the term

−
∫
BR(x)

∂2N(x− ξ)
∂xi∂xj

f(x)dξ = −
∫
BR(x)

∂2N(x− ξ)
∂ξi∂ξj

f(x)dξ =

=

{
a very formal
integration by parts

}
=

=

∫
BR(x)

∂N(x− ξ)
∂ξi

∂f(x)

∂ξj
dξ −

∫
∂BR(x)

∂N(x− ξ)
∂ξi

νj(ξ)f(x)dξ.

So at least formally∫
Rn

∂2N(x− ξ)
∂xi∂xj

f(ξ)dξ =

∫
BR(x)

∂2N(x− ξ)
∂xi∂xj

(f(ξ)− f(x)) dξ− (2.12)

−f(x)

∫
∂BR(x)

∂N(x− ξ)
∂xi

νj(ξ)dA(ξ)

where all the terms on the right hand side are well defined. Of course, equation
(2.12) is utter non-sense since we aren’t really sure how to define the left hand
side. We therefore use the right hand side, which is defined, in the expression
in the statement of step 3. However, we need to be very careful when we prove
step 3 to make sure that all our integrals are well defined.

As we already remarked we will use the same method as in step 2 and
consider approximate functions uε and prove that the approximate functions
converge uniformly in C2 to u.



16 CHAPTER 2. THE LAPLACE EQUATION IN RN .

Let us start with the real proof. Following step 2 we define the function

wij(x) =

∫
BR(x)

∂2N(x− ξ)
∂xi∂xj

(f(ξ)− f(x)) dξ− (2.13)

−f(x)

∫
∂BR(x)

∂N(x− ξ)
∂xi

νj(ξ)dA(ξ).

Since the integrand in the first integrand satisfy the estimate∣∣∣∣∂2N(x− ξ)
∂xi∂xj

(f(ξ)− f(x))

∣∣∣∣ ≤ C

|x− ξ|n−α
(2.14)

it follows that the first integrand is absolutely integrable on BR(x) for every
R > 0 and the first integrand is therefore well defined. The second integral
in (2.13) is also well defined since we integrate a continuous function over a
compact set. It follows that wij is well defined.

We also define

vε(x) =

∫
BR(x)

ηε(|x− ξ|)
∂N(x− ξ)

∂xi
f(ξ)dξ. (2.15)

Clearly vε(x)→ ∂u(x)
∂xi

uniformly since∣∣∣∣vε(x)− ∂u(x)

∂xi

∣∣∣∣ =

∣∣∣∣∫
BR

(ηε(|x− ξ|)− 1)
∂N(x− ξ)

∂xi
f(ξ)dξ

∣∣∣∣ ≤
≤ sup
ξ∈B2ε(x)

|f(ξ)|
∫
B2ε(x)

∣∣∣∣∂N(x− ξ)
∂xi

∣∣∣∣ dξ ≤ Cε sup
ξ∈Rn

|f(ξ)|,

where we used that ηε(|x− ξ|) = 1 for |x− ξ| ≥ 2ε.
Since the integrand in (2.15) is C1 in x we may differentiate differentiate

under the integral, Theorem 2.3 in the appendix, and deduce that

∂vε(x)

∂xj
=

∫
BR(x)

∂

∂xj

(
ηε(|x− ξ|)

∂N(x− ξ)
∂xi

)
f(ξ)dξ

which is continuous, since the integrand is and the set of integration is compact.

As in step 2 we want to show that ∂vε(x)
∂xj

converges uniformly as ε→ 0.

To prove that we write ∂vε(x)
∂xj

in a form similar to the form of wij :

∂vε(x)

∂xj
=

∫
BR(x)

∂

∂xj

(
ηε(|x− ξ|)

∂N(x− ξ)
∂xi

)
f(ξ)dξ−

−f(x)

∫
BR(x)

∂

∂xj

(
ηε(|x− ξ|)

∂N(x− ξ)
∂xi

)
dξ+

+f(x)

∫
BR(x)

∂

∂xj

(
ηε(|x− ξ|)

∂N(x− ξ)
∂xi

)
dξ =
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=

{
integration
by parts

}
=

=

∫
BR(x)

∂

∂xj

(
ηε(|x− ξ|)

∂N(x− ξ)
∂xi

)
(f(ξ)− f(x)) dξ−

−f(x)

∫
∂BR(x)

ηε(|x− ξ|)
∂N(x− ξ)

∂xi
νj(ξ)dA(ξ) =

=

∫
BR(x)

∂2N(x− ξ)ηε(|x− ξ|)
∂xi∂xj

(f(ξ)− f(x)) dξ−

−f(x)

∫
∂BR(x)

∂N(x− ξ)
∂xi

νj(ξ)dA(ξ),

where we used that ηε(|x− ξ|) = 1 on ∂BR(x) if ε < R (which we may assume)
in the last equality. Notice that now we have no problem to integrate by parts
since we have “cut out” the singularity by multiplying by ηε.

To prove that ∂vε
∂xj

converges uniformly to wij we calculate∣∣∣∣∂vε(x)

∂xj
− wij(x)

∣∣∣∣ =

=

∣∣∣∣ ∫
BR(x)

∂2N(x− ξ)
∂xj∂xi

(f(ξ)− f(x)) (ηε(|x− ξ| − 1)) dξ+

+

∫
BR(x)

∂ηε(|x− ξ|)
∂xj

∂N(x− ξ)
∂xi

(f(ξ)− f(x)) dξ

∣∣∣∣ ≤
≤
∫
B2ε(x)

∣∣∣∣∂2N(x− ξ)
∂xj∂xi

(f(ξ)− f(x))

∣∣∣∣ dξ+
+
C

ε

∫
B2ε(x)\Bε(x)

∣∣∣∣∂N(x− ξ)
∂xi

(f(ξ)− f(x))

∣∣∣∣ dξ ≤
≤ C

∫
B2ε(x)

1

|x− ξ|n−α
dξ +

C

ε

∫
B2ε(x)\Bε(x)

1

|x− ξ|n−1−α dξ ≤

≤ Cεα.

Thus ∂vε
∂xj
→ wij uniformly. Since vε → ∂u

∂xi
uniformly we may use Theorem 2.2

conclude that

∂2u(x)

∂xi∂xj
=

∫
BR(x)

∂2N(x− ξ)
∂xi∂xj

(f(ξ)− f(x)) dξ−f(x)

∫
∂BR(x)

∂N(x− ξ)
∂xi

νj(ξ)dA(ξ)

which finishes the proof of step 3.

Step 4. The function u(x) satisfies ∆u(x) = f(x).
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Proof of step 4: By step 3 we know that u(x) ∈ C2
loc(Rn) and that

∂2u(x)

∂x2
i

=

∫
BR(x)

∂2N(x− ξ)
∂x2

i

(f(ξ)− f(x)) dξ−f(x)

∫
∂BR(x)

∂N(x− ξ)
∂xi

νi(ξ)dA(ξ).

This implies in particular that

∆u(x) =

∫
BR(x)

n∑
i=1

∂2N(x− ξ)
∂x2

i

(f(ξ)− f(x)) dξ−

−f(x)

∫
∂BR(x)

n∑
i=1

∂N(x− ξ)
∂xi

νi(ξ)dA(ξ) =

=

∫
BR(x)

∆N(x− ξ) (f(ξ)− f(x)) dξ − f(x)

∫
∂BR(x)

∇N(x− ξ) · ν(ξ)dA(ξ).

(2.16)
But ∆N(x − ξ) = 0 at almost every point which implies that the first integral
in (2.16) is zero. To calculate the second integral in (2.16) we notice that

ν(ξ) =
x− ξ
|x− ξ|

and

∇N(x− ξ) =
1

ωn

x− ξ
|x− ξ|n

=
1

ωn

ν(ξ)

Rn−1
,

on ∂BR(x). Thus

∆u(x) = f(x)

∫
∂BR(x)

∇N(x− ξ) · ν(ξ)dA(ξ) =

=
f(x)

Rn−1ωn

∫
∂BR(x)

|ν(ξ)|2dA(ξ) = f(x)

since |ν(ξ)|2 = 1 and
∫
∂BR(x)

dA(ξ) = ωnR
n by the definition of ωn. This

finishes the proof.
Remark: The proof is rather long and difficult to overview. But the bulk of

the proof consists in using the cut off function ηε to make sure that the integrals
involved are well defined. The real important step in the proof is in step 3 where
we use the Hölder continuity of f(x) to assure that the second derivatives of
u(x) are well defined. It is in the very last equation of the proof where we see
why we choose the rather strange constant 1

(n−2)ωn
in the definition of N(x).

2.2 Appendix: Some Integral Formulas and Facts
from Analysis.

In this appendix we repeat some results form analysis.
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Theorem 2.2. Let D ⊂ Rn be a domain and assume that uε is a family of
continuous functions on D such that

1. uε → u locally uniformly as ε→ 0,

2. ∂uε
∂xi

is locally continuous on D.

3. ∂uε
∂xi
→ wi locally uniformly as ε→ 0.

Then ∂u
∂xi

exists, is locally continuous and ∂u
∂xi

= wi.

Proof:
Step 1: The function wi is locally continuous.
Proof of step 1: We will argue by contradiction and assume that wi has

a discontinuity point x0 ∈ D. That means that there exists two sequences
xj → x0 and yj → x0 such that

lim
j→∞

|wi(xj)− wi(yj)| = δ > 0. (2.17)

Since D is open there exists some r > 0 such that Br(x0) ⊂ D. Also, since
∂uε
∂xi
→ wi locally uniformly there exists an ε0 > 0 such that∣∣∣∣∂uε(x)

∂xi
− wi(x)

∣∣∣∣ < δ

4
(2.18)

for all x ∈ Br(x0) and ε < 2ε0.

Using that
∂uε0
∂xi

is locally continuous on D and that Br(x0) is compact we
may conclude that there exists a µ > 0 (for simplicity of notation we may assume
that µ < r) such that ∣∣∣∣∂uε0(x)

∂xi
− ∂uε0(y)

∂xi

∣∣∣∣ < δ

4
(2.19)

for all x, y ∈ Bµ(x0).
In particular we may conclude that for any j large enough such that xj , yj ∈

Bµ(x0) ∣∣wi(xj)− wi(xj)∣∣ =

=

∣∣∣∣wi(xj)− ∂uε0(xj)

∂xi
−
(
wi(y

j)− ∂uε0(yj)

∂xi

)
+

(
∂uε0(xj)

∂xi
− ∂uε0(yj)

∂xi

)∣∣∣∣ ≤
≤
∣∣∣∣wi(xj)− ∂uε0(xj)

∂xi

∣∣∣∣+

∣∣∣∣wi(yj)− ∂uε0(yj)

∂xi

∣∣∣∣+

∣∣∣∣∂uε0(xj)

∂xi
− ∂uε0(yj)

∂xi

∣∣∣∣ < 3δ

4
,

where we have used (2.18) and (2.19). This clearly contradicts (2.17) which
finishes the proof of step 1.

Step 2: Assume that Br(x) ⊂ D. Then

u(x+ eih) = u(x) +

∫ h

0

wi(x+ sei)ds
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for any |h| < r. Here ei is the i :th unit vector ei = (0, 0, ..., 1, ..., 0) where the
1 is in the i :th coordinate place.

Proof of step 2: Since uε → u locally uniformly it follows that

u(x+ hei)− u(x) = lim
ε→0

(uε(x+ hei)− uε(x)) =

=

 fundamental
Theorem
of calculus

 = lim
ε→0

∫ h

0

∂uε(x+ sei)

∂xi
ds =

∫ h

0

wi(x+ sei)ds,

where the last step follows form the uniform convergence ∂uε
∂xi
→ wi. Step 2

follows.

Step 3: The end of the proof.
Form the fundamental Theorem of calculus and step 2 it follows that

∂u(x)

∂xi
= wi(x)

which is continuous by step 1.

Theorem 2.3. Let D0 and D1 be domains and assume that f(x, ξ) is locally
continuous on D0 × D1 = {(x, ξ); x ∈ D0 and ξ ∈ D1}. Assume furthermore

that ∂f(x,ξ)
∂xi

is locally continuous on D0 ×D1.
Then for any compact set K ⊂ D1

fi(x, ξ) ≡
∂

∂xi

∫
K

f(x, ξ)dξ =

∫
K

∂f(x, ξ)

∂xi
dξ (2.20)

and fi is locally continuous on D0.

Proof: Since D0 is open and x ∈ D0 there exists a ball Bµ(x) ⊂ D0. Notice

that Bµ(x)×K ⊂ D0 ×D1 is compact since Bµ(x) and K are5.

Since Bµ(x) ×K ⊂ D0 × D1 is compact it follows that f(x,ξ)
∂xi

is uniformly

continuous on Bµ(x)×K ⊂ D0 ×D1.6

By definition

∂

∂xi

∫
K

f(x, ξ)dξ = lim
h→0

∫
K

f(x+ hei, ξ)− f(x, ξ)

h
dξ. (2.21)

Next, using the mean value property for the derivative we see that there exists
a γ(x, ξ) such that γ(x, ξ) ∈ [0, h] and

f(x+ hei, ξ)− f(x, ξ) =
∂f(x+ γ(x, ξ)ei)

∂xi
h.

5Remember that the product of two compact sets are compact.
6Remember that continuous functions are uniformly continuous of compact sets.
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We may conclude that∣∣∣∣∫
K

f(x+ hei, ξ)− f(x, ξ)

h
dξ −

∫
K

∂f(x, ξ)

∂xi
dξ

∣∣∣∣ =

=

∣∣∣∣∫
K

∂f(x+ γ(x, ξ)ei, ξ)

∂xi
dξ −

∫
K

∂f(x, ξ)

∂xi
dξ

∣∣∣∣ ≤
≤
∫
K

∣∣∣∣∂f(x+ γ(x, ξ)ei, ξ)

∂xi
dξ − ∂f(x, ξ)

∂xi

∣∣∣∣ dξ.
But since ∂f(x,ξ)

∂xi
is uniformly continuous there exists an hε > 0 for each ε > 0

such that ∣∣∣∣∂f(x+ sei, ξ)

∂xi
dξ − ∂f(x, ξ)

∂xi

∣∣∣∣ < ε

for each |s| < hε. Since |γ(x, ξ)| < h it follows, for |h| < h0, that∫
K

∣∣∣∣∂f(x+ γ(x, ξ)ei, ξ)

∂xi
dξ − ∂f(x, ξ)

∂xi

∣∣∣∣ dξ < |K|ε,
where |K| denotes the volume of the set K.7

In particular we may conclude that for each ε > 0

lim
h→0

∣∣∣∣∫
K

f(x+ hei, ξ)− f(x, ξ)

h
dξ −

∫
K

∂f(x, ξ)

∂xi
dξ

∣∣∣∣ < |K|ε.
It follows that (2.20).

To see that fi(x, t) is locally continuous in x we again notice that ∂f(x,ξ)
∂xi

is

uniformly continuous on Bµ(x) × K which implies that for every ε > 0 there
exists a hε > 0 such that ∣∣∣∣∂f(x, ξ)

∂xi
− ∂f(x, ξ)

∂xi

∣∣∣∣ =

=

∣∣∣∣∫
K

∂f(x, ξ)

∂xi
dξ −

∫
K

∂f(y, ξ)

∂xi
dξ

∣∣∣∣ ≤∫
K

εdξ ≤ |K|ε

for every y ∈ Bµ(x) such that |x− y| < hε. Continuity follows.
Let us remind ourselves of the following results from calculus.

Theorem 2.4. [The Divergence Theorem.] Let Ω be a C1 domain (that
is the boundary ∂Ω is locally the graph of a C1 function) in Rn and v =
(v1, v2, ..., vn) ∈ C1(Ω;Rn). Then∫

Ω

div(v)dx =

∫
∂Ω

v(x) · ν(x)dA(x)

where div(v) =
∑n
j−1

∂vj

∂xj
is the divergence of v and ν(x) is the outward pointing

unit normal of ∂Ω the point x.

7Rather the measure of K (in case you have studied measure theory)
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We will not prove this theorem.

Corollary 2.1. [Integration by parts.] Let Ω be a C1 domain (that is the
boundary ∂Ω is locally the graph of a C1 function) in Rn and v, w ∈ C1(Ω).
Then ∫

Ω

∂v(x)

∂xi
dx = −

∫
Ω

v(x)
∂w(x)

∂xi
dx+

∫
∂Ω

w(x)v(x)νi(x)dA(x)

where νi(x) is the i :th component of the outward pointing unit normal of ∂Ω
the point x.

Proof: If we apply the divergence theorem to the vector function v(x)w(x)ei
we see that ∫

Ω

div (v(x)w(x)ei) dx =

∫
∂Ω

v(x)w(x)ei · ν(x)dA(x).

The left hand side in the last expression is∫
Ω

∂v(x)

∂xi
dx+

∫
Ω

v(x)
∂w(x)

∂xi
dx.

Putting these two expression together gives the Corollary.

Theorem 2.5. [Green’s Formulas.] Let Ω be a C1 domain and u, v ∈
C2(Ω) ∩ C1(Ω) then

1. ∫
Ω

v(x)∆u(x)dx+

∫
Ω

∇v(x) · ∇u(x)dx =

∫
∂Ω

v(x)
∂u(x)

∂ν
dA(x)

where ν is the outward pointing unit normal of Ω and ∂u(x)
∂ν = ν · ∇u(x)

and dA(x) is an area element of ∂Ω.

2. ∫
Ω

(v(x)∆u(x)− u(x)∆v(x)) dx =

∫
∂Ω

(
v(x)

∂u(x)

∂ν
− u(x)

∂v(x)

∂ν

)
dA(x).

Proof: For the first Green identity we apply the divergence theorem to
v(x)∇u(x). The second identity follows from interchanging u and v in the
first identity and subtract the result.

2.3 Appendix: An Excursion into the subject of
Regularization.

In this appendix we remind ourselves of a fact from regularization theory. The
goal of this section is to show that we may approximate any continuous func-
tion uniformly by a function in C∞. This is an important tool in analysis to
approximate irregular functions by infinitely differentiable functions. We start
by introducing the standard mollifier.
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Definition 2.4. Let

φ(x) =

{
c0e
− 1

1−|x|2 for |x| < 1
0 for |x| ≥ 1,

where c0 is chosen so that
∫
Rn φ(x)dx = 1.

We will, for ε > 0, call φε(x) = 1
εnφ(x/ε) the standard mollifier.

Slightly abusing notation we will at times write φε(x) = φε(|x|).

Before we state the main theorem for mollifiers we need to introduce some
notation.

Definition 2.5. We say that α = (α1, α2, ..., αn) ∈ Nn0 (where N0 = {0, 1, 2, ...})
is a multiindex. We will say that the length of α is |α| =

∑n
j=1 αj. And for

u(x) ∈ Ck(Ω) and |α| = l ≤ k we will write

∂|α|u(x)

∂xα
≡ ∂lu(x)

∂xα1
1 ∂xα2

2 ...∂xαnn
.

Note that a multiindex is just a shorthand way of writing derivatives.
The standard mollifier is important because of the following Lemma.

Lemma 2.2. Let ε > 0 and φε(x) be the standard mollifier then

1. spt(φε) = Bε(0) where spt(φε) = {x ∈ Rn; φε(x) 6= 0} is the support of φε,

2. φε ∈ C∞(Rn),

3.
∫
Rn φε(x)dx = 1,

4. if u ∈ C(Ω) (or if u is locally integrable) and we define

uε(x) =

∫
Ω

u(y)φε(x− y)dy

for x ∈ Ωε = {x ∈ Ω; dist(x, ∂Ω) > ε} then uε ∈ C∞(Ωε)

5. and if u ∈ C(Ω), where Ω is open, then limε→0 uε(x) → u(x) uniformly
on compact sets of Ω.

Proof: We will prove each part individually.

Part 1: To show that the support of φε is Bε(0) we notice that for |x| ≥ ε
we have

φε(x) =
1

εn
φ(x/ε) = 0

since |x/ε| ≥ 1 and φ(x) = 0 for |x| ≥ 1. For |x| < ε we have φε(x) =

c0
εn e
− ε2

ε2−|x|2 > 0. That is φε > 0 in Bε(0) and φε = 0 in Rn \ Bε(0). By
definition the support of φε is the closure of the set where φε 6= 0.
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Part 2: In order to see that φε ∈ C∞(Rn) we notice that it is enough to
show that φ(x) ∈ C∞(Rn). In particular we have

∂|α|φε(x)

∂xα
=

1

εn+|α|
∂|α|φ(x/ε)

∂xα
,

so if φ ∈ C∞ then φε ∈ C∞.
We will show, by induction, that, for any multiindex α,

∂|α|φ(x)

∂xα
=
pα(x)

qα(x)
φ(x), (2.22)

where pα(x) and qα(x) are polynomials, qα(x) > 0 in B1(0). When |α| = 0
the representation is obviously true with p0(x) = q0(x) = 1. If we assume that
(2.22) is true for all multiindexes α of length k− 1 then for any multiindex β of
length k we have some j ∈ {0, 1, 2, ..., n} and multiindex α of length k − 1 such
that in B1(0)

∂|β|φ(x)

∂xβ
=

∂

∂xj

∂|α|φ(x)

∂xα
=

∂

∂xj

(
pα(x)

qα(x)
φ(x)

)
=

=
qα(x)∂pα(x)

∂xj
− pα(x)∂q(x)

∂xj

q2
α(x)

φ(x) +
pα(x)

qα(x)

∂φ(x)

∂xj
=

=

qα(x)∂pα(x)
∂xj

− pα(x)∂q(x)
∂xj

q2
α(x)

+
xj

(1− |x|2)2

φ(x),

we may define the quantity in the brackets on the right hand side as
pβ(x)
qβ(x) .

Since pα, qα and (1 − |x|2)2 are all polynomials it follows that pβ and qβ are
polynomials. Moreover we see, by a simple induction, that qβ is a power of
1− |x|2 so qβ(x) > 0 in B1(0).

For x ∈ Rn \B1(0) it follows that

∂|α|φ(x)

∂xα
= 0

since φ(x) = 0 for x ∈ Rn \B1(0).
Finally we notice that since pα(x) is a polynomial we have for every multiin-

dex α a constant Cα such that supB1(0) |pα(x)| ≤ Cα. And for each multiindex

α there is some k such that qα(x) = (1− |x|2)k. We may therefore estimate

lim
|x|→1

∣∣∣∣pα(x)

qα(x)
φ(x)

∣∣∣∣ ≤ lim
t→1

∣∣∣∣cn Cα
(1− t2)k

e
− 1

1−t2

∣∣∣∣ = 0

since e
− 1

1−t2 → 0 with exponential speed as t → 1 whereas Cα
(1−t2)k

→ ∞ with

polynomial speed.
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We have therefore shown that φ(x) is continuously differentiable for any α.

Part 3: This follows by a change of variables∫
Rn
φε(x)dx =

∫
Rn

1

εn
φ
(x
ε

)
dx =

{
set x = εy
then dx = εndy

}
=

∫
Rn
φ(y)dy = 1.

Part 4: Follows from Theorem 2.3.

Part 5: Let K ⊂ Ω be compact. Since u ∈ C(Ω) it follows that for any
x ∈ Ω and δ > 0 there exists a 1

2 inf(1,dist(K, ∂Ω)) > κδ > 0 such that

|u(x)− u(y)| < δ

for all x ∈ K and y such that |x− y| < κδ. In particular if ε < κδ then∣∣∣∣∫
Ω

φε(x− y)u(y)dy − u(x)

∣∣∣∣ =

∣∣∣∣∣
∫
Bε(x)

φε(x− y)u(y)dy − u(x)

∣∣∣∣∣ ≤
∣∣∣∣∣
∫
Bε(x)

φε(x− y)
(
u(y)− u(x)

)
dy

∣∣∣∣∣ ≤
∫
Bε(x)

φε(x− y)|u(y)− u(x)|dy <

< δ

∫
Bε(x)

φε(x− y)dy = δ

where we used that φε(x − y) = 0 in Rn \ Bε(x) in the first inequality, that∫
Bε(x)

φ(x− y)dy = 1 in the second and that |u(y)− u(x)| < δ in the forth and

and that
∫
Bε(x)

φ(x− y)dy = 1 again in the last equality.

2.4 Exercises Chapter 3.

Exercise 1.

1. Show that all affine functions u(x) = a+ b · x are harmonic.

2. LetA be an n×n−matrix and show that if u(x) = 〈x,A〉·x =
∑n
i,j=1 aijxixj

is harmonic if and only if trace(A) = 0.

3. Find all harmonic third order polynomials in R2.

4. Let u(z) be an analytic function in a domain D ⊂ C. Define the function
v(x, y) = RE(u(x+ iy)) (the real part of the complex valued u) and prove
that ∆v(x, y) = 0 in the set {(x, y); x+ iy ∈ D}. In particular there are
polynomial harmonic functions of any order in R2.

Hint: The Cauchy-Riemann equations.
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Exercise 2:

A: Let K ⊂ Rn be a compact set and x ∈ K◦ (the interior of K). Prove the
following

1.
∫
K

1
|x−y|q dy converges if and only if q < n.

2. If |f(y)| ≤ C
|x−y|q and q < n then

∫
K
f(y)dy is well defined.

B: Let f(x) be a continuous function defined on Rn. Prove that if there
exists a constant C such that |f(x)| ≤ C|x|−p and p > n then the integral∫
Rn f(x)dx is well defined.

C: Assume that f(x) is a function defined on Rn and that f(x) is continuous
on Rn\{x0}. Assume furthermore that there exists constants Cp, Cq, 0 ≤ q < n
and p > n such that |f(x)| ≤ Cp|x|−p for all x /∈ B1(x0) and |f(x)| ≤ Cq|x −
x0|−q for all x ∈ B1(x0). Prove that

∫
Rn f(x)dx is well defined.

D: Prove that (2.7), (2.14) and (2.4) are well defined under the weaker
assumption that f(x) is continuous on Rn and satisfies |f(x)| ≤ C|x|−2+ε for
some ε > 0.

Exercise 3: In the informal discussion leading up to Theorem 2.1 we in-
dicated that we needed to assume that f ∈ Cαloc in order to make sense of the
second derivatives of u(x) defined as in (2.4). It is always good in mathematics
to make sure that our assumptions are necessary. In this exercise we will prove
that the expression in Step 3 in the proof of Theorem 2.1 is not well defined
under the assumption that f(x) is continuous with compact support. We will
also slightly weaken the assumption that f ∈ Cα in Theorem 2.1.

A: Define f(x) in B1/2(0) according to

f(x) =
x1x2

|x|2| ln(|x|)|
.

Show that f(x) is continuous.

B: Prove that we may extend f(x) to a continuous function on R2 with
support in B1(0).

Hint: Can we find a function g(x) ∈ C∞c (B1(0)) such that g(x) = 1 in
B1/2? Then f(x)g(x) would be a good candidate for a solution.

C: Show that the right hand side in the expression

∂2u(x)

∂x1∂x2
=

∫
B2(x)

∂2N(x− ξ)
∂x1∂x2

(f(ξ)− f(x)) dξ−

−f(x)

∫
∂B2(x)

∂N(x− ξ)
∂x1

ν2(ξ)dA(ξ)

from step 3 in the proof of Theorem 2.1 is not well defined at x = 0 with the
f(x) defined in step B. Conclude that it is not enough to assume that f(x) is
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continuous with compact support in order for our current proof of Theorem 2.1
to work.

D: In the theory of PDE one often uses Dini continuity. We say that a
function f(x) is Dini continuous if there exists a continuous function σ ≥ 0
defined on [0, 1) such that σ(0) = 0 and∫ 1

0

σ(t)

t
dt <∞

such that

|f(x)− f(y)| ≤ σ(|x− y|) for all x, y s.t. |x− y| < 1.

Prove that Theorem 2.1 holds under the weaker assumption that f(x) is Dini
continuous with compact support in Rn.

Remark on Exercise 3: Notice that we have only proved that the ex-
pression in Step 3 in not well defined for this particular f . One might ask if
there is another way to define a solution so that ∆u = f . We will se later in
the course that that is not the case. With our particular function f the only
possible solutions to the Laplace equation are not C2. But before we reach the
point where we can understand how to define solutions that are not C2 we need
to develop more understanding of the Laplace equation.

Exercise 4: Very often in PDE books one proves the weaker statement that
if f ∈ C2

c (Rn) then

u(x) =

∫
Rn
N(x− ξ)f(ξ)dξ

is a C2
loc(Rn) function and ∆u(x) = f(x). It might be a good exercise to prove

this statement directly using the following steps.

A: Show that

u(x) =

∫
Rn
N(ξ)f(x− ξ)dξ.

B: Prove that
∂2u(x)

∂xi∂xj
=

∫
Rn
N(ξ)

∂2f(x− ξ)
∂xi∂xj

dξ

and that u ∈ C2
loc.

C: Notice that

∆u(x) =

∫
Rn
N(ξ)∆xf(x− ξ)dξ =

∫
Rn
N(ξ)∆ξf(x− ξ)dξ =

=

∫
Bδ(x)

N(ξ)∆ξf(x− ξ)dξ +

∫
BR(x)\Bδ(x)

N(ξ)∆ξf(x− ξ)dξ, (2.23)

if R is chosen large enough. Then show that for any ε > 0 there exists a δε > 0
such that the first integral in (2.23) has absolute value less than ε and the second
integral differs from f(x) by at most ε. Conclude the theorem.

Hint: Use Green’s second formula when you estimate the second integral.
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Chapter 3

Green’s Functions.

In this section we will begin to understand how to solve the Dirichlet problem
in a domain Ω. The Dirichlet problem consists of finding a u ∈ C2(Ω) ∩ C(Ω)
solving

∆u(x) = f(x) in Ω
u(x) = g(x) on ∂Ω.

(3.1)

where f ∈ Cα(Ω) and g ∈ C(∂Ω) are given functions.
In this chapter we will investigate what the theory from the previous chapter

would imply for solutions to (3.1). This will lead to the concept of a Green’s
function which is similar to the fundamental solution - but for a given domain.
However, we can not, in general, calculate the Green’s function. But for certain
simple domains, with much symmetry, it is possible to explicitly calculate the
Green’s function. We will calculate the Green’s function for the upper half space
Rn+ = {x ∈ Rn; xn > 0} and for a ball Br(0).

3.1 An informal motivation for the concept of
Green’s functions.

To motivate the introduction of Green’s functions we have to look at the theory
we have developed so far - that is all we have. In particular we have shown that
we may define a solution to ∆u(x) = f(x) for any f ∈ Cαc (Rn) by

u(x) =

∫
Rn
N(x− ξ)f(ξ)dξ. (3.2)

Using that ∆u(x) = f(x) we arrive at

u(x) =

∫
Rn
N(x− ξ)∆ξu(ξ)dξ.

Let us try to see if the same argument applies to solutions to (3.1). To that

29
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end we assume that u ∈ C2,α(Ω) and define

ũ(x) =

∫
Ω

N(x− ξ)∆u(x)dx.

If u(x) where defined according to (3.2) for some f ∈ Cαc (Rn) and Ω = Rn
then ũ(x) = u(x). But we don’t expect, in general, that ũ(x) = u(x) for any
u ∈ C2,α(Ω) for an arbitrary Ω. The point is that, using the explicit expression
for ũ(x), we can calculate the difference ũ(x) and see what mathematics gives
us back and hopefully it will give us some information about u.

Therefore we estimate∫
Ω

N(x−ξ)∆u(x)dx =

∫
Bε(x)

N(x−ξ)∆u(ξ)dξ+

∫
Ω\Bε(x)

N(x−ξ)∆u(ξ)dξ = I1+I2.

(3.3)

+

∫
Ω\Bε(x)

N(x− ξ)∆u(ξ)dξ = I1 + I2.

We expect I1 to be small, as a matter of fact:

|I1| ≤ sup
Bε(x)

|∆u|
∫
Bε(x)

C

|x− ξ|n−2
dξ ≤ C sup

Bε(x)

|∆u|ε2,

where we assumed, for definiteness, that n ≥ 3. To calculate I2 we use the
second Green formula and conclude

I2 =

∫
Ω\Bε(x)

N(x− ξ)∆u(ξ)dξ =

=

∫
Ω\Bε(x)

u(ξ)∆ξN(x−ξ)dξ+
∫
∂Ω

(
N(x− ξ)∂u(ξ)

∂ν(ξ)
− u(ξ)

∂N(x− ξ)
∂ν(ξ)

)
dA∂Ω(ξ)+

+

∫
∂Bε(x)

(
N(x− ξ)∂u(ξ)

∂ν(ξ)
− u(ξ)

∂N(x− ξ)
∂ν(ξ)

)
dA∂Bε(x)(ξ) = I3 + I4 + I5.

Notice that I3 = 0 since ∆ξN(x− ξ) = 0 in Ω \Bε(x). Next we look at I5 and
estimate

I5 =

∫
∂Bε(x)

− 1

(n− 2)ωn

1

εn−2

∂u(ξ)

∂ν
dξ +

∫
∂Bε(x)

− 1

ωn

1

εn−1
u(ξ)dξ.

That is

|I5 − u(x)| ≤

∣∣∣∣∣
∫
∂Bε(x)

− 1

(n− 2)ωn

1

εn−2

∂u(ξ)

∂ν
dξ

∣∣∣∣∣+ (3.4)

+

∣∣∣∣∣
∫
∂Bε(x)

1

ωn

1

εn−1
(u(ξ)− u(x)) dξ

∣∣∣∣∣ ≤ supΩ |∇u|
n− 2

ε+ sup
∂Bε(x)

|u(ξ)− u(x)|,

where the first term goes to zero as ε→ 0 since |∇u| is bounded (we assume that
u ∈ C2(Ω)) and the second term goes to zero as ε → 0 since u is continuous.
We can thus conclude that I5 → u(x) as ε→ 0.
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To summarize, we have proven that∫
Ω

N(x− ξ)∆u(ξ)dξ = I1 + I2 = 0 + I3 + I4 + I5 =

= 0 + 0 +

∫
∂Ω

(
N(x− ξ)∂u(ξ)

∂ν(ξ)
− u(ξ)

∂N(x− ξ)
∂ν(ξ)

)
dA∂Ω(ξ) + u(x),

as ε→ 0.
Rearranging terms we arrive at

u(x) =

∫
Ω

N(x−ξ)∆u(ξ)dξ−
∫
∂Ω

(
N(x− ξ)∂u(ξ)

∂ν(ξ)
− u(ξ)

∂N(x− ξ)
∂ν(ξ)

)
dA∂Ω(ξ).

(3.5)
So if u(x) was a solution to (3.1) then

u(x) =

∫
Ω

N(x− ξ)f(ξ)dξ −
∫
∂Ω

(
N(x− ξ)∂u(ξ)

∂ν(ξ)
− g(ξ)

∂N(x− ξ)
∂ν(ξ)

)
dA∂Ω(ξ),

(3.6)
this is a rather good expression but it has one serious flaw. We do not know
what value ∂u

∂ν has on ∂Ω. If we new that we could calculate u(x) by just using

f(x), g(x) and ∂u
∂ν . But if N(x − ξ) happened to be equal to zero on ∂Ω then

the troublesome term ∫
∂Ω

N(x− ξ)∂u(ξ)

∂ν(ξ)
dA∂Ω(ξ)

in equation (3.5) would be equal to zero and (3.6) would become

u(x) =

∫
Ω

N(x− ξ)f(ξ)dξ +

∫
∂Ω

g(ξ)
∂N(x− ξ)
∂ν(ξ)

dA∂Ω(ξ) (3.7)

and we would have a representation formula for u(x) in terms of the given data
f(x) and g(x). This motivates us to define a function G(x, ξ) that has similar
properties as N(x− ξ) but so that G(x, ξ) = 0 for ξ ∈ ∂Ω.

Definition 3.1. Let Ω be a domain with C1 boundary and assume that for every
x ∈ Ω we have a solution φx(ξ) ∈ C2(Ω) ∩ C(Ω) to

∆φx(ξ) = 0 in Ω
φx(ξ) = N(x− ξ) on ∂Ω.

(3.8)

Then we say that
G(x, ξ) = N(x− ξ)− φx(ξ)

is the Green’s function in Ω.

Remark: Notice that until we can prove that φx(ξ) is a unique solution to
(3.8) we have on right to say that G(x, ξ) is the Green’s function since there
might be many Green’s functions satisfying the definition. Later on we will
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prove that φx is indeed the unique solution and that we are therefore justified
in calling G the Green’s function.

Since the Green’s function G(x, ξ) has the same type of singularity as N(x−
ξ) at x = ξ so there is some hope that the above calculations should work in
the same way for G(x, ξ) as they did for N(x − ξ). Moreover, G(x, ξ) = 0 for
ξ ∈ ∂Ω which makes it reasonable to hope that the representation formula (3.7)
would work for G(x, ξ) in place of N(x− ξ). However, we need to prove this.

3.2 The Green’s function.

The main reason to introduce Green’s functions is the following Theorem.

Theorem 3.1. Assume that u ∈ C2(Ω) ∩ C1(Ω) and that u(x) solves (3.1),
where Ω is a bounded domain with C1 boundary. Assume furthermore that
G(x, ξ) is the Green’s function for Ω. Then

u(x) =

∫
Ω

G(x, ξ)f(ξ)dξ +

∫
∂Ω

(
g(ξ)

∂G(x, ξ)

∂ν

)
dA∂Ω(ξ). (3.9)

Proof: The proof is very similar to the calculations we did in the previous
section. We will use use Green’s second identity on G(x, y) ≡ N(x− y)− φx(y)
and u(y). ∫

Ω

G(x, ξ)∆u(ξ)dξ =

=

∫
Bε(x)

G(x, ξ)∆u(ξ)dξ +

∫
Ω\Bε(x)

−u(y) ∆yG(x, y)︸ ︷︷ ︸
=0

+G(x, y)∆yu(y)

 dy =

=

 Green’s Second
formula on the
second integal


=

∫
Bε(x)

G(x, ξ)∆u(ξ)dξ +

∫
∂Ω

u(ξ)− ∂G(x, ξ)

∂ν
+G(x, ξ)︸ ︷︷ ︸

=0

∂u(ξ)

∂ν

 dA∂Ω(ξ)+

(3.10)

+

∫
∂Bε(x)

(
−u(ξ)

(
∂N(x− ξ)

∂ν
+
∂φx(ξ)

∂ν

)
− (N(x− ξ)− φx(ξ))

∂u(ξ)

∂ν

)
dA∂Bε(x)(ξ) =

=

∫
Bε(x)

G(x, ξ)∆u(ξ)dξ −
∫
∂Ω

u(ξ)
∂G(x, ξ)

∂ν
dA∂Ω(ξ)+

+

∫
∂Bε(x)

(
u(ξ)

∂φx(ξ)

∂ν
− φx(ξ)

∂u(ξ)

∂ν

)
dA∂Bε(x)(ξ) + I5,

where I5 → u(x) as ε→ 0 is the same as the expression in the previous section,
see formula (3.4).
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It is easy to estimate the remaining terms, in particular∣∣∣∣∣
∫
Bε(x)

G(x, ξ)∆u(ξ)dξ

∣∣∣∣∣ ≤ sup
Ω
|∆u(x)|

(∫
Bε(x)

|N(x− ξ)| dξ +

∫
Bε(x)

|φ(ξ)| dξ

)
≤

≤ C sup
Ω
|∆u(x)|

(
ε2 + sup

Ω
|φ|εn

)
→ 0

as ε→ 0. And similarily∣∣∣∣∣
∫
∂Bε(x)

(
u(ξ)

∂φx(ξ)

∂ν
− φx(ξ)

∂u(ξ)

∂ν

)
dA∂Bε(x)(ξ)

∣∣∣∣∣ ≤
≤ C

(
sup

Ω
|u| sup

Ω
|∇φx|+ sup

Ω
|∇u| sup

Ω
|φx|

)
εn−1 → 0.

Using these estimates together with (3.10) we may conclude, after sending
ε→ 0, that

u(x) =

∫
Ω

G(x, ξ)f(ξ)dξ +

∫
∂Ω

(
g(ξ)

∂G(x, ξ)

∂ν

)
dA∂Ω(ξ),

this finishes the proof of the Theorem.
Remarks: 1. Notice that (3.9) makes perfectly good sense even if we do

not know that we have a solution. A good guess (which is indeed true) is that
if we define u according to (3.9) then u solves the Dirichlet problem (3.1). To
actually prove this will require some extra work.

2) In some sense we hide the difficulties in this Theorem. In particular we
assume that we can solve (3.8) in order to define the Green’s function. But to
solve the Dirichlet problem is exactly what we are aiming to do. So we assume
that we have a solution to one Dirichlet problem, namely (3.8), in order to find
a representation for the solution to another Dirichlet problem (3.1).

The Theorem is however useful since the Dirichlet problem (3.8) has f = 0
and very special boundary data. So Theorem 3.1 states that if we can calculate
a solution to the Dirichlet problem with simple boundary data (3.8) in Ω then
we can find a representation for the solution to the Dirichlet problem in Ω with
any boundary data g ∈ C(∂Ω).

Our next goal will be to actually solve the Dirichlet problem (3.8) in some
simple domains Ω.

3.3 The Dirichlet Problem in Rn
+.

As pointed out in the last section, if we know that we have a solution u to the
Dirichlet problem in Ω, it is enough to solve the Dirichlet problem

∆φx(ξ) = 0 in Ω
φx(ξ) = −N(ξ − x) on ∂Ω.

(3.11)
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for every x in order to find a representation formula for u.
If Ω is very complicated it will be very hard to find a solution to (3.11). But

if Ω has some simple symmetries it is indeed possible to explicitly write down the
solutions to (3.11). In this section we will consider Ω = Rn+ = {x ∈ Rn; xn > 0}.

We need to find a φx(ξ) solving

∆φx(ξ) = 0 in Rn+
φx(ξ) = N(ξ − x) on ∂Rn+ = {ξ ∈ Rn; ξn = 0}.

Notice that

∆N(ξ − x) = 0 in Rn− = {ξ ∈ Rn; ξn < 0}
N(ξ − x) = N(ξ − x) on ∂Rn− = ∂Rn+ = {ξ ∈ Rn; ξn = 0}.

So N(yξ − x) is a solution, but in the wrong half space! This is however very
easy to fix by a simple reflection. We define

φx(ξ) = N(ξ − x̃) (3.12)

where x̃ = (x1, x2, ..., xn−1,−xn). Then we have, for ξ ∈ ∂Rn+ that is ξn = 0,

φx(ξ) = − 1

(n− 2)

1

|ξ − x|n−2
= − 1

(n− 2)

1

(|ξ′ − x′|2 + |xn|2)
n−2

2

= N(ξ − x),

where we have used the notation x′ = (x1, x2, ..., xn−1, 0) and ξ′ = (ξ1, ξ2, ..., ξn−1, 0).
We also assumed that n ≥ 3 for simplicity. The calculations for n = 2 is very
similar.

We have thus proved the following Lemma.

Lemma 3.1. The Green’s function in Rn+ is

G(x, ξ) = N(ξ − x)−N(ξ − x̃)

where x̃ = (x1, x2, ..., xn−1,−xn).

3.3.1 The Poisson Kernel in Rn
+.

We know that if we have a solution to the Dirichlet problem

∆u(x) = f(x) in Ω
u(x) = g(x) on ∂Ω.

then we can represent the solution by the formula

u(x) =

∫
Ω

G(x, ξ)∆u(ξ)dξ +

∫
∂Ω

(
u(ξ)

∂G(x, ξ)

∂ν

)
dA∂Ω(ξ),

if Ω is C1 and bounded and the Green’s function G(x, ξ) exists and is C1(Ω) ∩
C2(Ω).
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If f = 0 this reduces to

u(x) =

∫
∂Ω

(
u(ξ)

∂G(x, ξ)

∂ν

)
dA∂Ω(ξ).

This representation formula indicates that ∂G(x,ξ)
∂ν is of special importance. We

make the following definition.

Definition 3.2. Let Ω be a domain and G(x, ξ) be the corresponding Green’s
function. Call assume that the normal derivative of G(x, ξ) exists on ∂Ω and
callit

K(x, ξ) =
∂G(x, ξ)

∂ν

the Poisson Kernel for Ω and the representation formula

u(x) =

∫
∂Ω

(
u(ξ)

∂G(x, ξ)

∂ν

)
dA∂Ω(ξ)

we call the Poisson formula.

Since we know the Green’s function in Rn+ we are able to calculate the Poisson
kernel for Rn+.

Lemma 3.2. The Poisson kernel for Rn+ is

K(x, ξ) =
xn
ωn

1

|x− ξ|n
.

Proof: The Poisson kernel is by definition

∂G(x, ξ)

∂ν
.

The normal of Rn+ is −en so the Poisson kernel is

K(x, ξ) = −∂G(x, ξ)

∂ξn

and

G(x, ξ) = N(ξ − x)−N(ξ − x̃).

The Lemma follows by a simple calculation.

Lemma 3.3. For every xn > 0 we have∫
Rn−1

K(x, ξ′)dξ′ = 1,

where y′ = (ξ1, ξ2, ..., ξn−1, 0) and dξ′ = dξ1dξ2...dξn−1.



36 CHAPTER 3. GREEN’S FUNCTIONS.

Proof: In order to evaluate the integral of the Poisson kernel we will resort
to a trick. I am not particularly fond of tricks in mathematics but in this case
it will save us some calculation (which I do not like any more than tricks).

First we notice that by translating ξ′ → z + x′ we get∫
Rn

xn
|ξ′ − x|n

dξ′ =

∫
Rn

xn
|z′ − xnen|n

dz′ =

∫
Rn

xn
|ξ′ − xnen|n

dξ′

so we might assume that x′ = (0, 0, ..., 0) without changing the value of the
integral.

Secondly, we notice that if we change variables ξ′ → sz′ for any s > 0 then
we get ∫

Rn

xn
|ξ′ − x|n

dy′ =

∫
Rn−1

sn−1xn
|sz′ − x|n

dz′
∫
Rn

xn
s∣∣z′ − x
s

∣∣n dz′
which implies that the value of the integral of the Poisson kernel is independent
of xn > 0. So there is a constant cn such that

cn =

∫
Rn

xn
|ξ′ − x|n

dξ′,

where cn is independent of x as long as xn > 0.
The difficult part is to evaluate∫

Rn−1

xn
|ξ′ − x|n

dξ′ =

∫
Rn−1

xn

(|ξ′|2 + |xn|2)
n/2

dξ′ = cn. (3.13)

In order to evaluate (3.13) we notice that∫ ∞
0

1

1 + x2
n

(∫
Rn−1

xn

(|ξ′|2 + x2
n)
n/2

dξ′

)
dxn (3.14)

= cn

∫ ∞
0

1

1 + x2
n

dxn = cn (arctan(∞)− arctan(0)) =
cnπ

2
.

We may also evaluate (3.14)∫ ∞
0

1

1 + x2
n

(∫
Rn−1

xn

(|ξ′|2 + x2
n)
n/2

dξ′

)
dxn =

=

∫ ∞
0

∫
Rn−1

+

1

1 + x2
n

xn

(|ξ′|2 + x2
n)
n/2

dξ′dxn,

changing to polar coordinates xn = r cos(ψ)r, r2 = |ξ′|2 + x2
n we may continue

the equality,

=

∫ ∞
0

∫
∂B+

1 (0)

r cos(ψ)

1 + r2 cos2(ψ)

1

rn
rn−1dA∂B+

1 (0)dr =
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=

∫
∂B+

1 (0)

∫ ∞
0

cos(ψ)

1 + r2 cos2(ψ)
dA∂Br(0)dr =

∫
∂B+

1 (0)

π

2
dA∂B+

1
=
πΩn

2
, (3.15)

where we again used that
∫

a
1+a2x2 = arctan(ax) and that r cos(ψ) → ∞ as

r →∞.
Comparing (3.15) and (3.14) we see that cn = ωn this implies that∫

Rn−1

K(x, ξ′)dy′ =
cn
ωn

= 1.

The next Theorem establishes that we may indeed use the Poisson kernel to
calculate a solution to the Dirichlet problem in Rn+.

Theorem 3.2. Let g ∈ Cc(∂Rn+) and define

u(x) =

∫
Rn−1

xn
ωn

g(ξ′)

|x− ξ′|n
dξ′ (3.16)

where ξ′ = (ξ1, ξ2, ..., ξn−1, 0) and dξ′ = dξ1dξ2...dξn−1. Then

∆u(x) = 0 in Rn+
limxn→0+ u(x′, xn) = g(x′) uniformly on compact sets x′ ∈ K ⊂⊂ Rn−1.

(3.17)

Remark: There is a slight abuse of notation in this Theorem. We use the
notation ξ′ = (ξ1, ξ2, ..., ξn−1, 0) as a vector in Rn with zero as its last compo-
nent. But we also use ξ′ = (ξ1, ξ2, ..., ξn−1) ∈ Rn−1 without the zero in the
n :th component when we write g(ξ′). It should be clear from context which
convention we are using.

Proof: We will do the proof into two steps.
Step 1: The function u defined in (3.16) is well defined and is harmonic in

Rn+.
That the function is well defined and that we may differentiate under the

integral sign is clear since the integrand has compact support in ξ′ and is C∞ in
x for each x ∈ Rn+. To show that ∆u(x) = 0 follows from a simple calculation.

Step 2: Showing that limxn→0+ u(x′, xn) = g(x′) uniformly on compact
sets.

To show that limxn→0+ u(x′, xn) = g(x′) uniformly on compact sets we notice
that since g ∈ C(Rn−1) it follows that g is uniformly continuous on compact
sets K ⊂⊂ Rn−1. Fix a compact set K ⊂⊂ Rn−1. For technical reasons that
will become clear later we will define

K1 = ∪x∈KB1(x),

that is K1 is the closed set containing all points that are at a distance at most
one from K. Since K is compact it is closed and bounded which implies that K1
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is closed and bounded and thus compact. Therefore g is uniformly continuous
on K1.

In particular for every ε > 0 we have a δε/2 > 0, which we may assume to
satisfy δε/2 < 1, such that

|g(x′)− g(ξ′)| < ε

2
(3.18)

for every x′ ∈ K such that |x′ − ξ′| < δε/2. Here we use that g is uniformly
continuous on K1, notice that if x′ ∈ K and |x′−ξ′| < δε/2 < 1 then x′, ξ′ ∈ K1

and we may use the same δε/2 for all x′ ∈ K.
Using that

∫
Rn−1 K(x, ξ′)dy = 1 (Lemma 3.3) we see that for any x′ ∈ K

|u(x′, xn)− g(x′)| =
∣∣∣∣∫

Rn−1

xn
ωn

g(ξ′)− g(x′)

|x− ξ′|n
dy′
∣∣∣∣ ≤

≤

∣∣∣∣∣
∫
Rn−1\Bδε/2 (x′)

xn
ωn

g(ξ′)− g(x′)

|x− ξ′|n
dy′

∣∣∣∣∣+

∣∣∣∣∣
∫
Bδε/2 (x′)

xn
ωn

g(ξ′)− g(x′)

|x− ξ′|n
dξ′

∣∣∣∣∣ =

(3.19)
= Iε/2 + Jε/2

It is easy to see that

Jε/2 ≤
∫
Bδε/2 (x′)

xn
ωn

|g(ξ′)− g(x′)|
|x− ξ′|n

dξ′ <
ε

2

∫
Bδε/2 (x′)

xn
ωn

1

|x− ξ′|n
dξ′ <

ε

2

(3.20)
since

∫
Rn−1 K(x, ξ′)dy = 1, |g(ξ′)−g(x′)| < ε for all ξ′ ∈ Bδε(x′) andK(x, ξ) > 0.

Noticew that the estimate (3.20) is independent of xn > 0.
Also, if we chose R so large that g(ξ′) = 0 outside of BR(x′) for all x′ ∈ K,

∣∣Iε/2∣∣ =

∣∣∣∣∣
∫
Rn−1\Bδε/2

xn
ωn

g(ξ′)− g(x′)

|x− ξ′|n
dξ′

∣∣∣∣∣ ≤
≤ sup
ξ′∈Rn−1, x′∈K

|g(ξ′)− g(x′)|

∣∣∣∣∣
∫
BR(0)\Bδε/2 (x′)

xn
ωn

1

|x− ξ′|n
dξ′

∣∣∣∣∣ ≤ (3.21)

≤
2xn supy∈Rn−1 |g(y)|

ωn

∣∣∣∣∣
∫
BR(0)\Bδε/2 (x′)

1

δnε/2
dξ′

∣∣∣∣∣ ≤
≤

(
2 supy∈Rn−1 |g(y)|Rn

nδnε/2

)
xn.

From (3.21) it follows that
∣∣Iε/2∣∣ < ε

2 if xn < δ̃ε where

δ̃ε =
nδnε/2

4 supy∈Rn−1 |g(y)|Rn
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only depend on g and the dimension.1

Putting (3.19), (3.20) and (3.21) together we have shown that for each com-
pact set K and each ε > 0 there is a δ̃ε such that for each x′ ∈ K

|u(x′, xn)− g(x′)| < ε for all xn < δ̃ε.

It follows that
lim

xn→0+
u(x′, xn) = g(x′)

uniformly on compact sets.

Corollary 3.1. Theorem 3.2 is still true under the assumption that g(ξ′) is
continuous and bounded.

Sketch of the Proof: The proof of the corollary is almost the same as the proof
of the Theorem. We only need to make sure that the integrals are convergent.
We will show that the integral in (3.16) is convergent and leave the rest of the
details to the reader.

Notice that u(x) is still well defined if g(ξ) is bounded and integrable. In
particular, under those assumptions there exists a constant C, depending only
on xn, supRn−1 |g(ξ′)| and the dimension such that∣∣∣∣xnωn g(ξ′)

|x− ξ′|n

∣∣∣∣ ≤ C in B1(x′),

and ∣∣∣∣xnωn g(ξ′)

|x− ξ′|n

∣∣∣∣ ≤ C

|x′ − ξ′|n
in Rn−1 \B1(x′),

it follows that the integral (3.16) is convergent under the assumptions in the
Corollary, see exercise 2C in the previous set of lecture notes.

Notice that we can now solve the Dirichlet problem in R+
+. In particular if

f ∈ Cαc (Rn) and g ∈ Cc(Rn−1) then

u1(x) =

∫
Rn
N(x− ξ)f(ξ)dξ

solves
∆u1(x) = f(x) in Rn

and

u2(x) =

∫
Rn−1

xn
ωn

g(ξ′)− u1(ξ′)

|x− ξ′|n
dy′

solves
∆u2(x) = 0 in Rn+
u2(x′, 0) = g(x′)− u1(x′, 0) on ∂Rn−1,

1In particular, δ̃ε only depend on g through sup |g|, the support of g and the continuity
properties of g, that is on δε/2.
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where the second identity is interpreted in the sense of limits as in Theorem 3.2.
In particular u(x) = u1(x) + u2(x) will solve

∆u(x) = f(x) in Rn+
u(x′, 0) = g(x′) on ∂Rn−1,

that is we now know how to solve the Dirichlet problem in Rn+.
In Theorem 3.1 we made an assumption that Ω was bounded. Obviously Rn+

is not a bounded set so we can not apply Theorem 3.1 to Rn+. We can however,
Theorem 3.2, construct a solution in Rn+.

The difference between Theorem 3.1 and Theorem 3.2 is that in Theorem
3.1 we assume that we have a solution and we find a representation formula for
that solution. In Theorem 3.2 we do not assume that we have a solution - we
prove that we have a solution.

However to state that the solution we construct in Theorem 3.2 is the same
as the any given solution we would have to know that the solutions are unique.
In bounded domains Ω it is indeed the case that solutions that are C2(Ω)∩C(Ω)
are unique, a fact that we will prove later. In unbounded domains, in particular
in Rn+, the solutions are not uniquely determined by the boundary data. A
simple example is that u(x) = axn is a solution to

∆u(x) = 0 in Rn+
u(x′, 0) = 0 for every x′ ∈ Rn−1.

(3.22)

for any a ∈ R. Clearly the Dirichlet problem (3.22) does not admit a unique
solution.

Before we end our discussion about the Dirichlet problem in Rn+ we should
mention something about the conclusion in Theorem 3.2 that limxn→0+ u(x′, xn) =
g(x′) uniformly on compact sets. We start by an example.

Example: There are infinitely many solutions to the following Dirichlet
problem in Rn+:

∆u(x) = 0 in Rn−1

limxn→0+ u(x′, xn) = 0 for all x′ ∈ Rn−1 limx→∞,xn>0 u(x) = 0.
(3.23)

Only one of these solutions, the trivial solution u(x) = 0, is bounded.
To see that there are infinitively many solutions we just notice that for each

a ∈ R and i = 1, 2, ..., n− 1 the function

ua(x) = a
xixn
|x|n+2

solves (3.23). In particular, ua is just a constant multiple of the derivative of the

Poisson kernel ∂K(x,0)
∂xi

which is harmonic in Rn+. That limx→∞,xn>0 u(x) = 0
follows easily from |ua(x)| ≤ a

|x|n → 0 as |x| → ∞. The proof that u(x′, xn)→ 0

as xn → 0+ splits up into two cases. If |x′| = δ 6= 0 then |ua(x)| ≤ axn
|δ|n+1 → 0

as xn → 0+ and if |x′| = 0 then xi = 0 and thus ua(x) = 0.
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Clearly, if a 6= 0 then the limit limxn→0+ ua(x′, xn) = 0 is not uniform since
ua is not bounded close to x = 0.

We have not developed enough theory, yet, to show that u(x) = 0 is the only
bounded solution. But we will in the next few weeks.

This example shows that the solution defined in Theorem 3.2 is a particu-
larly good solution. And that we have to be very careful when we investigate
uniqueness properties of the solutions. In general, it is not enough that the
boundary values are obtained in a limit sense for the solution to be unique.
That is we need the solution to the Dirichlet problem in Ω is continuous up to
the boundary for the solution to be unique.

3.4 The Green’s function in Br.

In this section we will repeat the analysis in the previous section for the domain
Ω = Br(0). We will leave some calculations for the reader.

For every x ∈ Br(0) we need to find a solution to

∆φx(ξ) = 0 in Br(0)
φx(ξ) = N(ξ − x) on ∂Br(0).

As before we want to use the particular symmetry of the domain to explicitly
calculate φx. To do that we need the following definition and Lemma.

Definition 3.3. For any x ∈ Rn we denote

x∗ =
r2x

|x|2
if |x| 6= 0.

We say that x∗ is the reflection of x in ∂Br(0). And if u a function defined in
Ω then we say that

u∗(x) =
rn−2

|x|n−2
u(x∗) for x∗ ∈ Ω

is the Kelvin transform of u.

Lemma 3.4. The ∗ operator maps the ball Br(0) onto Rn \Br(0):

{x∗; x ∈ Br(0) \ {0}} = Rn \Br(0).

Furthermore (x∗)∗ = x for all x 6= 0.

Proof: Clearly if |x| < r then

|x∗| =
∣∣∣∣ r2

|x|

∣∣∣∣ > r.
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Also

(x∗)∗ =

(
r2x

|x|2

)∗
=
r2 r2x
|x|2

r4 |x|2
|x|4

= x.

Lemma 3.5. Assume that u∗ is harmonic on Ω. Then u∗ is harmonic on

Ω∗ = {x; x∗ ∈ Ω}.

Proof: The proof is a straightforward, although rather tedious, calculation

∆u∗(x) = ∆

(
rn−2

|x|n−2
u

(
r2x

|x|2

))
= 0.

Next we notice that for x ∈ Br(0) we have that N(ξ − x) is harmonic in
both x and ξ for x 6= ξ. We want to do the Kelvin transform of N(y − x) with
respect to x ∈ Br(0). That is

N∗(ξ − x) =

{
− rn−2

|x|n−2
1

(n−2)ωn
1

|ξ−x∗|n−2 = − rn−2

(n−2)ωn
1

(|x||x∗−ξ|)n−2 if x 6= 0

− 1
(n−2)ωn

if x = 0,

when n > 2.
By Lemma 3.5 that ∆ξN

∗(ξ − x) = 0 whenever ξ 6= x∗. In particular, since
x ∈ Br(0) so x∗ /∈ Br(0), we have that for every ξ ∈ Br(0) x∗ 6= xi and thus
∆ξN

∗(ξ − x) = 0.
We have that if ξ ∈ ∂Br(0) then

N∗(ξ − x) = − 1

(n− 2)ωn

rn−2

(|x|2|x∗ − ξ|2)
(n−2)/2

=

= − 1

(n− 2)ωn

rn−2(∣∣∣ r2x
|x| − ξ|x|

∣∣∣2)(n−2)/2
= (3.24)

= − 1

(n− 2)ωn

rn−2

(r4 + 2r2x · ξ + r2|x|2)
(n−2)/2

,

where we used that |ξ|2 = r2 since ξ ∈ ∂Br(0). Again using that |ξ|2 = r2 we
deduce that r4 + 2r2x · ξ + r2|x|2 = r2|ξ − x|2. So we may write (3.24) as

N∗(ξ − x) = − 1

(n− 2)ωn

1

|ξ − x|n−2
= N(ξ − x)

for all ξ ∈ ∂Br(0). In particular N∗(ξ − x) satisfies the criteria of being the
corrector φx(ξ) in the definition of the Green’s function. All these calculations
also works for n = 2. We have thus proved the following Lemma
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Lemma 3.6. The Green’s function for Br(0) is

G(x, ξ) = N(ξ − x)−N∗ (ξ − x) ,

where

N∗(ξ − x) =

{
− 1

(n−2)ωn
rn−2

(|x||x∗−ξ|)n−2 if x 6= 0

− 1
(n−2)ωn

if x = 0,

when n > 2 and

N∗(ξ − x) =

{
− 1

2π

(
ln (|ξ − x∗|)− ln(r2)

)
= if x 6= 0

− 1
2π if x = 0,

when n = 2.

When we know the Green’s function we can calculate the Poisson kernel for
the ball.

Lemma 3.7. The Poisson kernel for the ball Br(0) is

K(x, ξ) =
r2 − |x|2

ωnr

1

|x− ξ|n
.

Proof: The proof is a simple calculation. We know, for n > 2, that

G(x, ξ) = N(ξ − x)−N∗ (ξ − x) =

− 1

(n− 2)ωn

1

|x− ξ|n−2
+

rn−2

(n− 2)ωn

1

(|x| |x̃− ξ|)n−2 .

The outward normal of Br(0) is ν = ξ
|ξ| = ξ

r which implies that for |ξ| = r we

have

K(x, ξ) =
ξ

r
· ∇ξG(x, ξ) =

n∑
j=1

ξj
r

(
1

ωn

xj − ξj
|x− ξ|n

− rn

ωn

xj − |x|2ξj
(|x||x̃− ξ)|)n

)
=

=
ξ

r
· ∇ξG(x, ξ) =

n∑
j=1

ξj
r

(
1

ωn

xj − ξj
|x− ξ|n

− 1

ωn

xj − |x|2ξj
(|x− ξ)|)n

)
(3.25)

where we used the same argument as in and the lines following (3.24). Simpli-
fying (3.25) we get

K(x, ξ) =
r2 − |x|2

ωnr

1

|x− ξ|n
.

Continuing as we did with the Poisson’s equation in Rn+ we need the following
Lemma.
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Lemma 3.8. Let K(x, ξ) be the Poisson kernel for a Br(0) then for each x ∈
Br(0) ∫

∂Br(0)

K(x, ξ)dA∂Br(0)(ξ) = 1.

Proof: We know, Theorem 3.1, that if ∆u(x) = 0 in Br(0) and u(x) = g(x)
on ∂Br(0) then

u(x) =

∫
∂Ω

(
g(ξ)

∂G(x, ξ)

∂ν

)
dA∂Ω(ξ) = (3.26)

=

∫
∂Ω

g(ξ)K(x, ξ)dA∂Ω(ξ),

where we also used the definition of K(x, ξ) in the last equality.
Clearly u(x) = 1 is a C2 solution to the Dirichlet problem with g(x) = 1.

Inserting this in (3.26) gives the lemma.
We are now ready to state the main Theorem of this section. The proof is

parallel to the proof of Theorem (3.2) and left to the reader (see the exercises).

Theorem 3.3. Let g ∈ C(∂Br(0)) and define

u(x) =

∫
∂Br(0)

r2 − |x|2

ωnr

1

|x− y|n
g(y)dA∂Br(0)(y). (3.27)

Then u ∈ C2(Br0) and

∆u(x) = 0 in Br(0)
lims→1− u(sx) = g(x) uniformly for every x ∈ ∂Br(0).

(3.28)

Notice that the second line in (3.28) only says that u satisfies the boundary
conditions in some sense.

3.5 Exercises:

Exercise 1: Let K((ξ, x) be the Poisson kernel for the half space Rn+. Prove
that ∆xK(ξ, x) = 0 for all ξ ∈ ∂Rn+. Conclude that an integral of the kind∫
Rn−1 K(x, ξ′)g(ξ′)dξ′ is nothing more that a summation of harmonic functions
K(x, ·).

Exercise 2: Verify that v(x) = xn is a solution to

∆u(x) = 0 in Rn+
u(x) = 0 on ∂Rn+.

Define u(x) as in Theorem 3.2 and verify that u(x)+av(x) is a solution to (3.17)
for any a ∈ R.

Draw the conclusion that the solution to (3.17) are not unique.

Exercise 3: We say that the functions Kε(x, ξ) defined for every ε > 0 and
x, ξ ∈ Rn is a family of “Good Kernels” if
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1. For every ε > 0 and every x ∈ Rn the function Kε(x, ξ) is integrable in ξ
and ∫

Rn
Kε(x, ξ)dξ = 1.

2. For every ε > 0 and x ∈ Rn there is a constant C that is independent of
ε such that ∫

Rn
|Kε(x, ξ)| dξ ≤ C.

3. For every, δ > 0, and every x ∈ Rn∫
Rn\Bδ(x)

|F (x, ξ)|dξ → 0 as ε→ 0.

A: Prove the Poisson kernel K(x, ξ′) for Rn+ is a family of “Good Kernels”

on Rn−1 if we interpret K(x, ξ′) = K̃xn(x′, ξ′) with xn > 0 playing the role of ε.

B: Prove that if Fε(x, ξ) is a family of “Good Kernels”, g is continuous and
bounded on Rn and

uε(x) =

∫
Rn
Kε(x, ξ)g(ξ)dξ.

Then limε→0+ u(x) = g(x).

Hint: Look at step 2 in the proof of Theorem 3.2. As a matter of fact, my
main reason for putting this exercise here is to force you to think through that
proof.

C: Can you formulate what it would mean for Kε(x, ξ) to be a family of
“Good Kernels” on the unit sphere ∂B1(0)? Use this to prove Theorem 3.3.

Exercise 4: Assume that u(x) ∈ C2
loc(D) and that ∆u(x) = 0 in D. Assume

furthermore that Br(x
0) ⊂ D is any ball. Prove that

u(x0) =
1

ωnrn−1

∫
∂Br(x0)

u(x)dA∂Br(x0)(x).

This is known as “The mean value property for harmonic functions” since it
states that if u(x) is harmonic in a domain then u(x0) is equal to the mean
value of u on the boundary of any ball with center at x0.

Hint: Can you use Theorem 3.3?

Exercise 5: Show that if u, v ∈ C2(Br(0)) ∩ C1(B1(0)) both solve the
Dirichlet problem

∆w(x) = 0 in B1(0)
w(x) = g(x) on ∂B1(0)

then u(x) = v(x) for all x ∈ B1(0). This shows that C2(Br(0)) ∩ C1(B1(0))
solutions to the Dirichlet problem in B1(0) are unique.

Hint: Representation formulas are great! They tell us exactly what the
solutions to the problem are.
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Exercise 6: Derive a representation formula for the solutions to the follow-
ing Dirichlet problem

∆u(x) = 0 in B+
1 (0) = {x ∈ B1(0); xn > 0}

u(x) = f(x) for x ∈ (∂B1(0))
+

= {x ∈ ∂B1(0); xn > 0}
u(x) = g(x) for x ∈ B1(0) ∩ {x; xn = 0}

Where f(x) and g(x) are given functions.

Hint: First prove that if we define the function f̂ on ∂B1(0) according to

f̂(x) =

{
f(x) for x ∈ (∂B1(0))

+

−f(x′,−xn) for x ∈ (∂B1(0))
−
.

Then the solution, v(x), to the Dirichlet problem in B1(0) that satisfies u(x) =

f̂(x) on ∂B1(0) also satisfies v(x′, 0) = 0. Use this together with Theorem 3.2
to get your representation formula - it doesn’t have to be pretty.
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An interlude on the Path
we will take - why go
abstract?

So far we have been able to prove that for any f ∈ Cαc (Rn) we can solve
∆u(x) = f(x) in Rn. Also, by using very similar ideas, we where able to solve
the simple Dirichlet problems

∆u(x) = f(x) in D
u(x) = g(x) on ∂D

(4.1)

for the simple domains D = Rn+ and D = Br(0). With a little bit of work
we could also, Exercise 6 from last installment of the lecture notes, solve the
Dirichlet problem for the simple domain D = B+

1 (0).
However, in many applications we would like to solve a PDE on a very

complicated domain. For instance, if we want to solve a problem involving
turbulence we might want to solve a PDE describing the motion of air in a
domain D that consists of R3 minus the shape of an airplane.

The method of solving a PDE by means of a Green’s function involves finding
the functions φx(y), that is solving the Dirichlet problem with boundary data
N(x − y), which we could only do for very simple domains. Even for fairly
simple domains such as the one consisting of three overlapping circles in figure
4 we do not know how to calculate φx(y) - and thus not how to calculate the
Green’s function. We need to move into the abstract theory and give up any
hope of finding explicit representation formulas.

Since the only way we know (at least from this course) to solve PDE in a
domain is by means of a Green’s function that is the only thing we can use
in solving the Dirichlet problem for a more complicated domain, such as the
domain consisting of three circles.

So let us try to hammer out an approach on how to solve (4.1) for D =“the
union of three circles A1, A2 and A3” and f(x) = 0. We may use the Green’s

47
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Figure 4.1: Domain consisting of Three Circles.

function to find a solution, lets call it u1(x), to the Dirichlet problem in A1

with boundary data g(x) on the part of ∂A1 where g(x) is defined and 0 on the
other part of ∂A1. If we let v1 be the function u1 extended by 0 to the rest of
D we have created a function v1 that is harmonic in D \ (∂A ∩D).

We may continue and use the Green’s function to find a harmonic function,
lets call it u2(x), in A2 with boundary data g(x) on the part of ∂A2 where g(x)
is defined and u1(x) on the other part of ∂A2 ∩D and boundary data equal to
zero on the rest of ∂A1 ∩D. We may define

v2(x) =

{
v1(x) in D \A2

u2(x) in A2.

Inductively we may create sequences uk(x) and vk(x) such that for any
l = 0, 1, 2, 3, ... and j ∈ {1, 2, 3} the function u3l+j solves the Dirichlet problem
in Aj :

1

∆u3l+j(x) = 0 in Aj

u3l+j(x) = g(x) on ∂Aj \ ∂D
u3l+j(x) = v3l+j−1(x) on ∂Aj ∪D

(4.2)

and

v3l+j =

{
v3l+j−1(x) in D \Aj

u3l+j(x) in Aj .

Notice that v3l+j(x) is then harmonic in Aj and that v3l+j = g(x) on ∂D
for every l ≥ 1 and j = 1, 2, 3. So if limk→∞ vk(x) converges to some function
u(x) then u(x) = liml→∞ v3l+j(x) in Aj for j = 1, 2, 3. That is u(x) would be
the limit of a sequence of harmonic functions in Aj for j = 1, 2, 3.

This leads to two questions:

1. Can we show that limk→∞ vk(x) exists?

2. Is harmonicity preserved under limits? That is, if a sequence of harmonic
functions v3l+j(x)→ u(x) as l→∞ will it follow that u(x) is harmonic?

1Since Aj is a ball we have no difficulties to solve this Dirichlet problem by means of a
Green’s function.
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Figure 4.2: An open Domain covered by Balls.

If the answer to both these questions are affirmative then we know how to
construct a solution to the Dirichlet problem, even though we don’t have an
explicit solution formula.

Before we try to make a brief outline of the theory that lies ahead. We will
indicate that the three balls domain described above isn’t as special as it looks.
We could have used the same approach for a domain consisting of four, five on
N balls. And if we can solve the Dirichlet problem for a domain that is the
union of a finite number of balls then we should be able to use some analysis
to to solve the Dirichlet problem for any domain that is the union of an infinite
number of balls. Observe that any open domain is the union of all the balls in
its interior.

So let us briefly indicate how we could attack the Dirichlet problem for a
general domain D using the strategy used for the domain consisting of three
balls. The natural way to approach this problem would be to we start with
a function v0(x) defined on that domain with boundary data g(x). Then we
define a new function

vk(x) =

{
uk(x) in Br(x

0) ⊂ D
vk−1(x) in D \Br(x0)

(4.3)

for some ball Br(x
0) ⊂ D and uk being a harmonic function, constructed by

means of a Green’s function, in Br(x
0) with boundary data vk−1(x). This

way we can construct a sequence vk(x) that hopefully converge to a harmonic
function.

The problem with this approach in a general domain is that the choice
of the ball Br(x

0) was a quite arbitrary choice among infinitively many balls
Br(x

0) ⊂ D. With this arbitrariness we can not expect that vk(x) converges to
a unique solution.2 So we can not rely on an arbitrary choice of the ball Br(x

0).
Before we explain how to get rid of the problem with the arbitrary choice

of the ball Br(x
0) in (4.3) let us say something brief about the convergence of

2If we choose the ball Br/2k (x0) in the construction of vk(x) then every function vk(x)

would equal v0 in D \Br(0) so unless our starting function was harmonic in D \Br(x0) there
is no chance that the limit would be harmonic in D.



50CHAPTER 4. AN INTERLUDE ON THE PATH WE WILL TAKE - WHY GO ABSTRACT?

vk(x). There are many ways to prove convergence of sequences of functions,
but one of the simplest ways to assure convergence is to have a bounded and
monotone sequence. So if, for every k = 1, 2, 3, ..., vk−1(x) had the property
that vk(x) ≥ vk−1(x) then the convergence of the sequence vk(x) would be easy.

If we could identify some functions S that has the property that if vk−1(x) ∈
S then vk(x) defined as in (4.3) would satisfy vk(x) ≥ vk−1(x) and vk(x) ∈ S for
any ball Br(x

0) ⊂ D then it would follow that v0(x) ≤ v1(x) ≤ ... ≤ vk(x) ≤ ....
So if vk(x) would be bounded then it would be pointwise convergent to some
function u(x).

But if every function in S is bounded then we could define

u(x) = sup
v∈S

v(x) = sup
v∈S

ṽ(x) (4.4)

where

ṽ(x) =

{
w(x) in Br(x

0) ⊂ D
v(x) in D \Br(x0)

(4.5)

where w is harmonic in Br(x
0) and equal to v on ∂Br(x

0). That (4.4) holds,
for any ball Br(x

0) ⊂ D, would follow from v ≤ ṽ ∈ S if v ∈ S.
Notice that by considering the supremum over S we no longer make any

choice of Br(x
0). The supremum assures that we take all balls Br(x

0) ⊂ D into
consideration simultaneously.

So the strategy to show existence of solutions in a general domain would
involve:

1. To identify a class S such that if v ∈ S then v(x) ≤ ṽ(x) and ṽ ∈ S
where ṽ(x) is defined by (4.5). The class S will be all the sub-harmonic
functions.

2. Since we will be taking a supremum over S we will have to understand the
limit properties3 of harmonic functions. In particular, we have to prove
that if ṽk is harmonic in Br(x

0) and ṽk → u in Br(x
0) will u be harmonic?

Step 1 of the strategy: We would like to define S so that v ∈ S implies
v ≤ ṽ for any ball Br(x

0). It is easy to find such a condition on S. In particular,
if v(x) > ṽ(x) for some point in x ∈ Br(x0) then, since v = ṽ on ∂Br(x

0), the
function v(x)− ṽ(x) has a strictly positive maximum at some point x̂ ∈ Br(x0).

At x̂ we have, by first year calculus, that ∂2v(x̂)−ṽ(x̂)
∂x2
i

≤ 0. Summing from

i = 1, ..., n we deduce that 0 ≥ ∆(v(x̂) − ṽ(x̂)) = ∆v(x̂). This implies that if
∆v(x) ≥ 0 then there are no x ∈ Br(x

0) such that v(x) > ṽ(x). So we are
tempted to define the class S to be the class of all functions v(x) such that
∆v(x) ≥ 0.

But the other condition we impose on S is that ṽ ∈ S. For us to state that
∆ṽ ≥ 0 we need to know that ṽ ∈ C2(D). But even if v(x) ∈ C2(D) it will

3In taking the supremum we may consider a sequence vk ∈ S such that vk(x) →
supv∈S v(x). So taking the supremum and a limit are more or less equivalent.
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not follow that ṽ is C2, or even differentiable, on ∂Br(x
0).4 We will therefore

have to find another way to define the class S without using derivatives. As a
matter of fact we will find a way to define harmonic functions without referring
to derivatives.

Step 2 of the strategy: Secondly we need to understand the convergence
properties of harmonic functions. To that end we can not use monotonicity but
we have to rely on compactness. We want to show that if ṽk(x) is a sequence of
harmonic, and thus C2, functions in Br(x

0) that converges to u(x) then u(x) is
harmonic. It is enough to show that the second derivatives of ṽk converges.

In general, by the Arzela-Ascoli Theorem, it is enough for a bounded se-
quence of continuous functions to be equicontinuous in order for a subsequence
to converge to a continuous function. Therefore we need to show that the sec-
ond derivatives of ṽk are equicontinuous. This leads us to one of the more
complicated aspects of the theory of partial differential equations: the regu-
larity theory. Regularity theory involves proving that the solutions to partial
differential equations are regular, that is have a certain number of derivatives
defined - preferably also being able to say that the derivatives are bounded in
terms of the given data.5

In this case we will prove that the third derivatives of ṽk are bounded uni-
formly which implies that the second derivatives are equicontinuous and thus
convergent.

Once we have understood sub-harmonic functions and the convergence prop-
erties of harmonic functions we will be able to prove existence of solutions for
general domains using the strategy outlined above - a method called Perron’s
method. That proof will be quite long and complicated.

When we consider the supv∈S v(x) we do not address the issue of the bound-
ary values. So we have to prove that our solution satisfy the boundary values6

in a separate Theorem.
When we solve the Dirichlet problem in a general domain D we can not hope

to find an explicit solution. Imagine how complicated such an explicit solution
would have to be, it would have to be a function from the set of domains D,
functions f and g and points x ∈ D to the value u(x) where ∆u(x) = f(x) in
D and u(x) = g(x) on ∂D. Just to find a reasonable way to define the space of
all domains D would be rather complicated. We have to move into an abstract
theory because the Dirichlet problem is very complicated and we have very few
tools.

4Take for instance v(x) = |x|2 − 1 and D = B1(0), then ∆v(x) = 2n ≥ 0 but if we use
x0 = 0 and r = 1

2
in the definition of ṽ(x) we will get

ṽ(x) =

{
− 3

4
in B1/2(0)

|x|2 − 1 in B1(0) \B1/2(0)

which is clearly not differentiable on ∂B1/2(0). However, as a distribution ∆ṽ is well defined
and ∆ṽ(x) ≥ 0. But we will not discuss the theory of distributions in this course.

5By data I mean the domain D, the right hand side f and the boundary data g.
6Or does it? Under what assumptions on the domain?
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Chapter 5

The Mean value Property.

If u ∈ C2(Br(0)) ∩ C(Br(0)) is given by the Poisson integral then

u(0) =

∫
∂Br(0)

K(x, y)u(y)dA∂Br(0)(y) =

∫
∂Br(0)

r2

ωnr

1

|y|n
u(y)dA∂Br(0)(y) =

(5.1)

=
1

ωnrn−1

∫
∂Br(0)

u(y)dA∂Br(0)(y),

where we have used that |y| = r on ∂Br(0). In particular, it follows that u(0)
equals the mean value of u(y) on the boundary of ∂Br(0). This is a very powerful
property and it is true for all harmonic functions.

Theorem 5.1. [The Mean Value Theorem.] Suppose that u ∈ C2(Ω)∩C(Ω)
is harmonic in the domain Ω and that Br(x

0) ⊂ Ω. Then

1.

u(x0) =
1

ωnrn−1

∫
∂Br(x0)

u(y)dA∂Br(x0)(y)

2. and

u(x0) =
n

ωnrn

∫
Br(x0)

u(y)dy.

Remark: The calculation in (5.1) constitutes a proof of the first statement.
We will however provide a different proof that directly uses that ∆u = 0. First of
all this proof is classical and should be included in the course. Secondly, we will
have reason to investigate the mean value property for solutions to ∆u(x) ≥ 0
and for those solutions the proof given here will be easier to utilize.

Proof: By translation invariance of the Laplace equation we may assume
that x0 = 0. That is the function ũ(x) = u(x + x0) is harmonic if u is. It is
therefore enough to prove the theorem for ũ(x) with x0 = 0. By this, there is
not loss of generality to assume that x0 = 0 from the start.
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Assuming that x0 = 0 and making a change of variables in the mean value
formula rz = y we see that, defining the function Ψ(r),

Ψ(r) =
1

ωnrn−1

∫
∂Br(0)

u(y)dA∂Br(x)(y) =
1

ωn

∫
∂B1(0)

u(rz)dA∂B1(0)(z).

Taking the derivative with respect to r we see that

Ψ′(r) =
1

ωn

∫
∂B1(0)

z · ∇u(rz)dA∂B1(0)(z) = (5.2)

=
1

ωn

∫
∂B1(0)

∂u(rz)

∂ν
dA∂B1(0)(z) =

1

ωn

∫
B1(0)

∆u(rz)dz = 0

since u is harmonic. We also used the divergence theorem in the second to last
equality. In particular Ψ(r) =constant= limr→0 Ψ(r). Since u ∈ C(Ω) we have

Ψ(r) = lim
r→0

Ψ(r) =
1

ωn

∫
∂B1(0)

lim
r→0

u(rz)dA∂B1(0)(z) =

=
1

ωn

∫
∂B1(0)

u(0)dA∂B1(0)(z) = u(0).

This proves the first version of the mean value Theorem.
To prove the second part of the mean value Theorem we use polar coordi-

nates.

n

ωnrn

∫
Br(x0)

u(y)dy =
1

nωnrn

∫ r

0

(∫
∂Bs(0)

u(y)dA∂Bs(0)(y)

)
ds.

Using the mean value Theorem on spheres we see that the integral in the brackets
can be evaluated ∫

∂Bs(0)

u(y)dA∂Bs(0)(y) = ωns
n−1u(0).

This implies that

n

ωnrn

∫
Br(x0)

u(y)dy =
n

ωnrn

∫ r

0

ωns
n−1u(0)ds = u(0).

This concludes the proof.
As a matter of fact the mean value property characterises harmonic functions

as the following Corollary shows.

Corollary 5.1. Assume that u ∈ C2(Ω) and that u satisfies the mean value
property in Ω. That is, for every ball Br(x0) ⊂ Ω the following equality holds

u(x0) =
1

ωnrn−1

∫
∂Br(x0)

u(y)dA∂Br(x0)(y). (5.3)

Then u is harmonic in Ω.
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Proof: We will argue by contradiction and assume that there exist an x0 ∈ Ω
such that ∆u(x0) 6= 0 and derive a contradiction. For definiteness we assume
that ∆u(x0) = δ > 0.

Since u ∈ C2(Ω) there exist an rδ < dist(x0, ∂Ω) such that

∣∣∆u(x0)−∆u(y)
∣∣ < δ

2

for all y such that |x0 − y| < rδ. In particular ∆u(y) > δ/2 in Brδ(x
0).

Define Ψ(r) according to

Ψ(r) =
1

ωnrn−1

∫
∂Br(x0)

u(y)dA∂Br(x0)(y).

That is, using the mean value property (5.3), Ψ(r) = u(x0). It follows, for
r < rδ and using the calculation in the proof of the mean value property,

0 = Ψ′(r) =
1

ωn

∫
B1(x9)

∆u(rz)dz >
1

ωn

∫
B1(x0)

r2 δ

2
dz > 0.

This is a contradiction. It follows that ∆u(x) = 0 in Ω.
Remark: Something important, but subtle, happens in this section. We

show that there is a property that is equivalent to ∆u(x) = 0 for C2 functions -
the mean value property. But the mean value property is in itself independent
of the function being C2. So could we define any function, regardless of whether
it is C2 or not, to be harmonic if it satisfies the mean value property? Indeed
we can, it even turns out as we will see later that the mean value property for
a function u implies that u ∈ C2. It is also through the mean value property
that we will be able to define something like ∆v(x) ≥ 0 without assuming that
v ∈ C2 which will be a crucial step in defining the class S of sub-harmonic
functions.
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Chapter 6

The maximum Principle.

From the mean value Theorem it follows that if u(x) is harmonic in a domain Ω
and if u(x) equals its supremum at a point x0 ∈ Ω then u must equal its supre-
mum in every ball contained in Ω with center at x0. It is a direct consequence
that only constant harmonic functions achieve their maximum in their domain
of harmonicity (if the domain is bounded and connected). The next Theorem
proves this.

Theorem 6.1. [The Strong Maximum Principle.] Suppose that u ∈ C2(Ω)∩
C(Ω) is harmonic in the bounded domain Ω. Then

sup
x∈Ω

u(x) = sup
x∈∂Ω

u(x).

Furthermore if Ω is also connected and there exist a point x0 ∈ Ω such that
u(x0) = supx∈Ω u(x) then u(x) is a constant.

Proof: Lets denote M = supx∈Ω u(x). Since u ∈ C(Ω) it follows that the set

ΩM = {x ∈ Ω; u(x) = M}

is a relatively closed set in Ω. Now assume that there is a point x0 ∈ Ω such
that u(x0) = M then for any r such that 0 < r < dist(x0, ∂Ω) we have by the
mean value property

M = u(x0) =
n

ωnrn

∫
Br(x0)

u(y)dy ≤ n

ωnrn

∫
Br(x0)

Mdy = M, (6.1)

where the inequality is an equality (which it obviously is) if and only if u(y) = M
for all y ∈ Br(x0). It follows that for any x ∈ ΩM there is a ball Br(x) ⊂ ΩM ,
that is ΩM is an open set in Ω. Since ΩM is both open and relatively closed in
Ω it follows that ΩM is either empty or a component of Ω.

If ΩM is the empty set it follows that the supremum of u is attained on the
boundary of Ω. If ΩM is a component of Ω it still follows that u(x) = M on the
boundary of that component of Ω.
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Finally, if Ω is connected and there exist an x0 ∈ Ω such that u(x0) = M
then it follows that ∅ 6= ΩM and therefore ΩM = Ω, that is u(x) = M in Ω.

Remark: If u(x) is harmonic so is −u(x). It is therefore an immediate
consequence of this theorem that if Ω is bounded and u is harmonic in Ω then

inf
x∈Ω

u(x) = inf
x∈∂Ω

u(x).

If Ω is also connected and if u attains its infimum at a point x0 ∈ Ω then u is
constant.

The maximum principle has many consequences, one of the most important
consequences is that it implies that solutions to the Dirichlet problem are unique.

Theorem 6.2. Let Ω be a bounded domain and suppose that u1, u2 ∈ C2(Ω) ∩
C(Ω) be two solutions to

∆u(x) = f(x) in Ω
u(x) = g(x) on ∂Ω.

Then u1 = u2 in Ω.

Proof: Define v = u1 − u2 then

∆v(x) = 0 in Ω
v(x) = 0 on ∂Ω.

So by the maximum principle it follows that supx∈Ω v(x) ≤ supx∈∂Ω v(x) = 0.
Applying the maximum principle on −v(x) we see that

− inf
x∈Ω

v(x) = sup
x∈Ω

(−v(x)) ≤ sup
x∈∂Ω

(−v(x)) = 0.

It follows that 0 ≤ v(x) ≤ 0, that is v(x) = 0 or u1(x) = u2(x) in Ω.
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Sub-harmonic functions.

If we assume that ∆u(x) ≥ 0 in Ω and define

Ψ(r) =
1

ωnrn−1

∫
∂Br(0)

u(y)dA∂Br(0)(y)

for all r such that Br(0) ⊂ Ω. Then we see, following the calculation in (5.2),
that

Ψ′(r) =
1

ωn

∫
∂B1(0)

z · ∇u(rz)dA∂B1(0)(z) =

=
1

ωn

∫
∂B1(0)

∂u(rz)

∂ν
dA∂B1(0)(z) =

1

ωn

∫
B1(0)

∆u(rz)dz ≥ 0.

In particular Ψ(r) is a non-decreasing function and since u is continuous we
have

u(0) = lim
r→0+

Ψ(r) ≤ Ψ(r) =
1

ωnrn−1

∫
∂Br(0)

u(y)dA∂Br(0)(y). (7.1)

We will say that u satisfies the sub-mean value property if it satisfy (7.1).

Definition 7.1. We say that u ∈ C(Ω) is sub-harmonic if it satisfies the sub-
mean value property:

u(x0) ≤ 1

ωnrn−1

∫
∂Br(x0)

u(y)dA∂Br(x0)(y)

for all x0 ∈ Ω and r ≥ 0 such that Br(x0) ⊂ Ω.
We say that u ∈ C(Ω) is super-harmonic if −u(x) is sub-harmonic. Equiva-

lently, u ∈ C(Ω) is super-harmonic if it satisfies the super-meanvalue property:

u(x0) ≥ 1

ωnrn−1

∫
∂Br(x0)

u(y)dA∂Br(x0)(y)

for all x0 ∈ Ω and r ≥ 0 such that Br(x0) ⊂ Ω.
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Since u being sub-harmonic implies that −u is super-harmonic it follows
that every theorem for subharmonic functions have a corresponding theorem
for super-harmonic functions.

Many of the theorems in the previous two sections have versions for sub and
super-harmonic functions with very similar proofs. In particular we have the
following, corresponding to Corollary 5.1.

Lemma 7.1. Assume that u ∈ C2(Ω) and that u is sub-harmonic in Ω. Then
∆u(x) ≥ 0 in Ω.

Conversely if u ∈ C2(Ω) and ∆u(x) ≥ 0 in Ω then u(x) is subharmonic in
Ω.

Proof: The proof is very similar to the proof of Corollary 5.1.
We will argue by contradiction and assume that there exist an x0 ∈ Ω such

that ∆u(x0) < 0 and derive a contradiction. For definiteness we assume that
∆u(x0) = −δ < 0.

Since u ∈ C2(Ω) there exist an rδ < dist(x0, ∂Ω) such that∣∣∆u(x0)−∆u(y)
∣∣ < δ

2

for all y such that |x0 − y| < rδ. In particular ∆u(y) < −δ/2 in Brδ(x
0).

Define Ψ(r) according to

Ψ(r) =
1

ωnrn−1

∫
∂Br(x0)

u(y)dA∂Br(x0)(y).

It follows, for r < rδ, that

Ψ′(r) =
1

ωn

∫
B1(0)

∆u(rz + x0)dz < − 1

ωn

∫
B1(0)

r2 δ

2
dz < 0. (7.2)

Since u ∈ C(Ω) it also follows that limr→0+ Ψ(r) = u(x0). Using (7.2) we see
that ψ(r) < u(x0) for r ∈ (0, rδ). This contradicts the sub-mean value property.

The second part follows by the calculation in the beginning of this section.

Remark: Here we use a wonderful technique of mathematics. In principle
we could define u(x) to be sub-harmonic if u ∈ C2(Ω) and ∆u(x) ≥ 0. Instead
we use the sub-mean value property and are able to define sub-harmonicity for
functions that are only in C(Ω) which is a much more flexible class of functions.
In particular, which we will show and use later, if u and v are subharmonic so
is max(u(x), v(x)) (this would not be true if we demanded that subharmonic
functions had to be in C2).

The Lemma shows that we are not giving up anything in our definition based
on the sub-mean value property. If a sub-harmonic function happens u(x) to be
in C2(Ω) then it satisfies the equation ∆u(x) ≥ 0.

Since our proof of the maximum principle was based on the mean value prop-
erty it is not surprising that the same result holds for sub-harmonic functions
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Theorem 7.1. The Strong Maximum Principle for Sub-Harmonic Func-
tions. Suppose that u ∈ C(Ω) is sub-harmonic in the bounded domain Ω. Then

sup
x∈Ω

u(x) = sup
x∈∂Ω

u(x).

Furthermore if Ω is also connected and there exist a point x0 ∈ Ω such that
u(x0) = supx∈Ω u(x) then u(x) is a constant.

Proof: The proof is exactly the same as for the strong maximum principle.
The only difference is that the second equality in (6.1) should be an inequality
and every time we referred to the mean value property we now have to refer to
the sub-mean value property.

Next we state a theorem that will be very important in our proof of existence
of solutions for the Dirichlet problem in a general domain. We will state it for
super-harmonic functions, but a similar statement is also true for sub-harmonic
functions.

Theorem 7.2. Let u, v ∈ C(Ω) be super-harmonic functions. Define

w(x) = min(u(x), v(x)).

Then w(x) is super-harmonic.

Proof: It is clear that w(x) is continuous so we only need to show that w
satisfies the super-mean value property. Notice that by definition w(x) ≤ u(x)
and w(x) ≤ v(x), with one of the inequalities being an equality. We will fix an
arbitrary point x0 ∈ Ω and for definiteness assume that w(x0) = u(x0). Then
since u(x) is super-harmonic we have, for any ball Br(x0) ⊂ Ω, that

w(x0) = u(x0) ≥ 1

ωnrn−1

∫
∂Br(x0)

u(y)dA∂Br(x0)(y) ≥

≥ 1

ωnrn−1

∫
∂Br(x0)

w(y)dA∂Br(x0)(y),

where we used that w(x) ≤ u(x) for all x. But this shows that w satisfies the
super-mean value property.

7.1 Sub and Super-Solutions.

It is possible to extend the concept of sub and super-harmonic functions to
general solutions to the Dirichlet problem.

Definition 7.2. We say that w(x) ∈ C2(Ω) ∩ C(Ω) is a sub-solution to

∆u(x) = f(x) in Ω
u(x) = g(x) on ∂Ω

(7.3)
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for f ∈ C(Ω) and g ∈ C(∂Ω) if

∆u(x) ≥ f(x) in Ω
u(x) = g(x) on ∂Ω.

Similarly we say that w(x) ∈ C2(Ω) ∩ C(Ω) is a super-solution to (7.3) if

∆u(x) ≤ f(x) in Ω
u(x) = g(x) on ∂Ω.

Remark: Notice that if u ∈ C2(Ω) is sub-harmonic then by Lemma 7.1 u is
a sub-solution to ∆u(x) = 0.

When we defined sub-harmonicity, we only needed to assume that u ∈ C(Ω)
(see Definition 7.1) whereas we demand general sub-solutions to be C2. It is
noteworthy that there are other definitions of sub-solutions that require less
stringent assumptions1 - and most of the Theorems we show for sub-solutions
would still be true. For simplicity we will assume that sub and super-solutions
are C2(Ω) for now.

The following Theorem will be important in our proof of existence of solu-
tions to the Dirichlet problem.

Theorem 7.3. [The Comparison Principle.] Let Ω be a bounded domain
and suppose that u1(x) ∈ C2(Ω) ∩ C(Ω) be a sub-solution and u2(x) ∈ C2(Ω) ∩
C(Ω) be a super-solution to

∆u(x) = f(x) in Ω
u(x) = g(x) on ∂Ω.

(7.4)

Then u1(x) ≤ u2(x) in Ω.

Proof: Notice that w(x) = u1(x)− u2(x) solves

∆w(x) ≥ 0 in Ω
w(x) = 0 on ∂Ω.

That is w(x) is sub-harmonic. By the maximum principle for sub-harmonic
functions it follows that w(x) ≤ 0 which implies that u1(x) ≤ u2(x).

Notice that if u(x) ∈ C2(Ω) ∩ C(Ω) is a solution to (7.4) then u is both a
sub and a super-solution so this Theorem directly implies Theorem 6.2.

1See for instance Definition 24.1.



Chapter 8

Interior Regularity of
Harmonic Functions.

A major part of the study of partial differential equations (PDEs), a part that
can be a little difficult to grasp, is the regularity theory. Regularity theory is
the branch of PDE studies that investigates how regular a solution is, basically
how many derivatives the solution has and if one can bound those derivatives.

We have already seen that the mean value property is equivalent to har-
monicity for C2 functions. But we only need the function to be continuous in
order to define the mean value property. So if we would define a function to be
harmonic if it is continuous and satisfies the mean value property could we still
make sense of the equation ∆u(x) = 0?

There are many different definitions of a function being a solution to a PDE;
classical solutions (solutions that are continuously differentiable), weak solutions
(defined by means of integration by parts), variational solutions (functions that
minimise a certain energy), viscosity solutions (solutions defined by the com-
parison principle) etc. The only solutions that a priori have enough derivatives
to satisfy the equation in the classical sense are classical solutions. These are
the solutions that we have been working with so far, we assume that a solution
to ∆u(x) = 0 are in C2 which makes it unproblematic to interpret whether a
given function is a solution or not.

There are several reasons that regularity theory is so important for the study
of partial differential equations. One reason is that it is often easier to prove
the existence of a, say, weak solution than it would be to show the existence of
a classical solution. But it is of obvious interest to know if the weak solution,
once we have it, is in fact a classical solution. Other reasons for doing regularity
theory is that one can use regularity theory to show properties of solutions,
something that we will exemplify by by the Liouiville Theorem below. Regular-
ity is also strongly related to existence theory, often it is only possible to show
that a solution exists by approximating the PDE and by a limit procedure for
which we need compactness. As a final motivation we should mention that only
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in very special cases are we able to write down a solution to a PDE. Instead we
rely on numerical analysis to calculate approximate solutions with computers.
In order to verify that we actually get a good approximation, and to say how
good our approximation is, we need to know something about the regularity of
the solutions.

In this section we will start to do some easy regularity theory. Our first
theorem states that if u(x) satisfies the mean value property in Ω then u ∈
C∞(Ω).

Theorem 8.1. Let Ω be a domain. Suppose that u ∈ C(Ω) and satisfies the
mean value property in Ω. Then u ∈ C∞(Ω) and ∆u(x) = 0 in Ω.

Proof: It is enough to show that u ∈ C∞(Ωε) for each ε > 0 where

Ωε = {x ∈ Ω; dist(x, ∂Ω) > ε}.

Fix an ε > 0 and define uε by means of the standard mollifier

uε(x) =

∫
Ω

u(y)φε(x− y)dy,

where φε(x) is a standard mollifier.It follows that uε ∈ C∞(Ωε).
1

We will show that uε(x) = u(x) in Ωε. This is established in the following
calculation

uε(x) =

∫
Bε(x)

φε(x− y)u(y)dy =

{
change to
polar coordinates

}
=

=
1

εn

∫ ε

0

φ
(s
ε

)(∫
∂Bs(x)

u(y)dA∂Bs(x)

)
ds =

=
1

εn

∫ ε

0

φ
(r
ε

)
ωns

n−1u(x)ds,

where we have used the mean value property in the last equality. Noticing that∫
∂Bs(0)

dA∂Bs(0)(y) = ωns
n−1 we may continue the calculation

1

εn

∫ ε

0

φ
(r
ε

)
ωns

n−1u(x)ds =

= u(x)

∫ r

0

∫
∂Bs(0)

1

εn
φ
(r
ε

)
dA∂Bs(0)(y)ds = u(x)

∫
Bε(0)

φε(y)dy = u(x),

where we used that
∫
φε(y)dy = 1 by the definition of φ in the final step. In

particular it follows that u(x) = uε(x) ∈ C∞(Ωε) for every x ∈ Ωε. Since Ω is
open it follows that u ∈ C∞ (∪ε>0Ωε) = C∞(Ω).

1See the appendix in the first part of these lecture notes for the definition of standard
mollifiers and the C∞-proof.
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Naively, one might think that the above result, that if u is harmonic then
u ∈ C∞, is the best possible result in regularity theory, which is after all about
showing that solutions to partial differential equations have derivatives.

There are two reasons why this result is not the best possible. The first
reason is that one can show (but we will not) that harmonic functions are in
fact analytic (can be expressed in a Taylor series). That is if ∆u(x) = 0 in the
domain Ω and x0 ∈ Ω then there is a ball Br(x

0) ⊂ Ω such that u(x) equals it
Taylor expansion

u(x) =

∞∑
k=0

∑
|α|=k

cα(x− x0)α in Br(x
0),

where we have used the multiindex notation again; α = (α1, ..., αn) in a multi-
index and (x−x0)α = (x1−x0

1)α1(x2−x0
2)α2 ...(xn−x0

n)αn . That analyticity is
stronger than C∞ is easy to see since the standard mollifier φ(x) ∈ C∞(Rn) but
the Taylor expansion at any point on ∂B1(0) must be identically zero since all
derivatives vanish on ∂B1(0). Thus we can not express φ by means of a Taylor
series.

The other reason why the above C∞ result is not the best possible (in every
respect) is more subtle. We already know that any continuous function f may
be approximated as closely as we want by a C∞ function, namely fε (see Lemma
2 in the Lectures from week 5). This means that a function being in C∞ does
not mean very much, in particular convergence and compactness properties of
C∞ functions are not good.

We need estimates in order to deduce desirable compactness properties of
solutions. By estimates we mean some inequality where we control higher deriva-
tives by means of lower derivatives. A typical, and important, estimate is pre-
sented in the following theorem where we show that derivatives on any order
of a harmonic function can be controlled by the integral of the function (that
is higher derivatives are controlled by the zeroth order derivatives). Before we
state the theorem we need a definition.

Definition 8.1. If u is a function whose absolute value is integrable in Ω we
write

‖u‖L1(Ω) =

∫
Ω

|u(x)|dx.

More generally, if |u|p is integrable in Ω we write

‖u‖Lp(Ω) =

(∫
Ω

|u(x)|dx
)1/p

.

Remark: We can consider the space of all integrable functions v such that
‖v‖Lp(Ω) < ∞, call this space Lp(Ω). If 1 ≤ p < ∞ then ‖ · ‖Lp(Ω) is a norm
on Lp(Ω). The most important result in integration theory is that Lp(Ω) is
a complete space with the norm ‖ · ‖Lp(Ω) if we interpret the integral in the
Lebesgue sense. These considerations are not important for us in this course.
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Theorem 8.2. Suppose that u ∈ C2(Ω) is harmonic in Ω. Then for each ball
Br(x

0) ⊂ Ω and each multiindex α of length |α| = k ≥ 1 we have the following
estimate ∣∣∣∣∂|α|u(x0)

∂xα

∣∣∣∣ ≤ n(2n+1nk)k

ωnrn+k
‖u‖L1(Br(x0)).

Proof: Since u is harmonic in Ω we know that u ∈ C∞(Ω). Writing ∂u
∂xi

= ui
we see by changing the order of differentiation that

∆ui(x) =
∂

∂xi

(
∆u(x)

)
=

∂

∂xi

(
0
)

= 0.

So ui is harmonic and satisfies therefore the mean value property. In particular
for Br(x

0) ⊂ Ω we may apply the mean value property to the ball Br/2(x0):

ui(x
0) =

n2n

ωnrn

∫
Br/2(x0)

ui(y)dy.

Taking the absolute values and integrating by parts we get

|ui(x0)| =

∣∣∣∣∣ n2n

ωnrn

∫
Br/2(x0)

∂u(y)

∂xi
dy

∣∣∣∣∣ =

=

∣∣∣∣∣ n2n

ωnrn

∫
∂Br/2(x0)

u(y)νidA∂Br/2(x0)
(y)

∣∣∣∣∣ ≤ 2n

r
sup

∂Br/2(x0)

(
|u|
)

(8.1)

where we used the notation νi = ν · ei where ν is the unit normal of ∂Br/2(x0)
and that∣∣∣∣∣

∫
∂Br/2(x0)

u(y)dA∂Br/2(x0)(y)

∣∣∣∣∣ ≤ sup
∂Br/2(x0)

|u|
∫
∂Br/2(x0)

dA∂Br/2(x0)(y) =

1

ω(r/2)n−1
sup

∂Br/2(x0)

|u|

in the last inequality. To estimate supy∈∂Br/2(x0)

(
|u(y)|

)
we use the mean value

formula again. Since Br(x
0) ⊂ Ω we have that Br/2(y) ⊂ Ω for each y ∈

∂Br/2(x0). We can therefore apply the mean value formula to the ball Br/2(y) ⊂
Ω:

|u(y)| ≤ n2n

ωnrn

∣∣∣∣∣
∫
Br/2(y)

u(z)dz

∣∣∣∣∣ ≤ n2n

ωnrn

∫
Br/2(y)

|u(z)|dz ≤ (8.2)

≤ n2n

ωnrn

∫
Br(x0)

|u(z)|dz =
n2n

ωnrn
‖u‖L1(Br(x0)),

where we used that
∫
Br/2(y)

|u(z)|dz ≤
∫
Br(x0)

|u(z)|dz since Br/2(y) ⊂ Br(x
0)

and that the integrand is non negative.
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Taking the supremum over ∂Br/2(x0) on both sides in (8.2) and inserting
this in (8.1) we get

|ui(x0)| ≤ n22n

ωnrn+1
‖u‖L1(Br(x0))

which proves the theorem for |α| = 1.

In order to prove the Theorem for general α we will use induction on the
length of |α|. We will assume that we have proved the theorem for all multiin-
dexes α of length k − 1. Now fix a multiindex β of length k and assume that
∂|β|

∂xβ
= ∂

∂xi
∂|α|

∂xα where α is a multiindex of length k− 1. Writing uγ(x) = ∂|γ|u(x)
∂xγ

for any multiindex γ we have for any Br(x
0) ⊂ Ω that

|uβ(x0)| =

∣∣∣∣∣ nknωnrn

∫
Br/k(x0)

∂uα(y)

∂xi
dy

∣∣∣∣∣ =

=

∣∣∣∣∣ nknωnrn

∫
∂Br/k(x0)

uα(y)νidA∂Br/k(x0)
(y)

∣∣∣∣∣ ≤ kn

r
sup

∂Br/k(x0)

(
|uα|

)
. (8.3)

Using the induction hypothesis we see that, for y ∈ ∂Br/k(x0)

|uα(y)| ≤
n
(
2n+1n(k − 1)

)k−1
kn+k−1

ωn
(
(k − 1)r

)n+k−1

∣∣∣∣∣
∫
B(k−1)r/k(y)

u(z)dz

∣∣∣∣∣ ≤
≤
n
(
2n+1n

)k−1
kn+k−1

ωn(k − 1)nrn+k−1

∫
B(k−1)r/k(y)

|u(z)|dz ≤ (8.4)

≤
n
(
2n+1n

)k−1
kn+k−1

ωn(k − 1)nrn+k−1
‖u‖L1(Br(x0)),

Putting (8.3) and (8.4) together we see that

|uβ(x0)| ≤
n2
(
2n+1n

)k−1
kn+k

ωn(k − 1)nrn+k
‖u‖L1(Br(x0)) =

=

(
kn

2n+1(k − 1)n

)(
n(2n+1nk)k

ωnrn+k
‖u‖L1(Br(x0))

)
,

noticing that the first bracket to the right in the last equation is less than one
gives the desired estimate.

As a direct consequence of Theorem 8.2 we state the following theorem.

Theorem 8.3. [The Liouiville Theorem] Suppose that u ∈ C0(Rn) is har-
monic. Then if |u(x)| ≤ C0 for every x ∈ Rn and for some constant C0 (C0 is
independent of x) then u(x) is constant in Rn.
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Proof: We use Theorem 8.2 for k = 1 and deduce that for any j ∈ {1, 2, ..., n}∣∣∣∣∂u(x0)

∂xj

∣∣∣∣ ≤ n22n

ωnrn+1
‖u‖L1(Br(x0)) =

n22n

ωnrn+1

∫
Br(x0)

|u(y)|dy ≤ n2n

r
C0. (8.5)

If we let r →∞ in (8.5) we can deduce that∣∣∣∣∂u(x0)

∂xj

∣∣∣∣ = 0

for every x0 ∈ Rn and j. It follows that u is constant.

Corollary 8.1. Suppose that u ∈ C0(Rn) is harmonic. Then if |u(x)| ≤ C0(1+
|x|k+α) for every x ∈ Rn and for some constant C0, k ∈ N and 0 ≤ α < 1 then
u(x) is a polynomial of degree at most k in Rn.

Proof: The argument is similar to the argument in Theorem 8.3. From
Theorem 8.2 we deduce that

∂|β|u(x)

∂xβ
≤ C

r1−α

for any multiindex β of length k + 1. In particular, sending r →∞ we see that
the (k+ 1) :st derivatives of u(x) are zero. That is the k :th derivatives of u are
constant. It follows that u is a polynomial of degree at most k.

8.1 The Harnack Inequality.

In this section we will state a very important important theorem known as the
Harnack inequality. At this point I am not sure if we are going to further explore
its consequences in this course. We will certainly not talk more about it in the
first part of the course.

Theorem 8.4. (The Harnack Inequality.) Let Ω be a domain. Then for
every connected compact set K ⊂ Ω there exist a constant CK such that

sup
x∈K

u(x) ≤ CK inf
x∈K

u(x)

for all non-negative harmonic functions u in Ω.

Proof: From the mean value property (used both in the first and in the last
equality) and standard estimates we may conclude that

u(x) =
n

ωn(2r)n

∫
B2r(x)

u(z)dz ≥ n

ωn(2rn

∫
Br(y)

u(z)dz =
1

2n
u(y) (8.6)

for any y ∈ Br(x). Notice that we use that u ≥ 0 in the inequality of (8.6).
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We have thus shown that

u(x) ≥ 1

2n
u(y) (8.7)

for any y ∈ Br(x).
Next we let r0 = 1

4dist(K, ∂Ω) and notice that for any z ∈ K there is a
path of balls (that will be chosen below), for j = 1, 2, ..., j0, Br0(yj) such that
Br0(x) ∪ Br0(yj) 6= ∅ and Br0(yj) ∪ Br0(yj+1) 6= ∅ and z ∈ Br0(yj0). Since K
is compact we see that j0 is finite. In particular, the set ∪z∈KBr0(z) is an open
cover of K so there is a finite sub-cover K ⊂ ∪Nk=1Br0(zk). It follows that we
may choose yj = zkj for some kj and conclude that j0 ≤ N .

We may pick a sequence x̃0 = x, x̃j ∈ Br0(yj) ∩ Br0(yj+1) and x̃j0+1 = z
and apply (8.7) with x̃j in place of x and x̃j+1 in place of y and r = 2r0. Since
x̃j , x̃j+1 ∈ Br0(yj+1) ⊂ B2r0(x̃j) we it is justified to apply (8.7).

In particular we have shown that

u(x) = u(x̃0) ≥ 2−nu(x̃1) ≥ 2−n
(
2−nu(x̃2)

)
≥ ... ≥

≥ 2−(j0+1)nu(x̃j0+1) = 2−(j0+1)nu(z).

But this holds for arbitrary x, z ∈ K. In particular we can choose x such that
u(x) = infy∈K

(
u(y)

)
and z such that u(z) = supy∈K

(
u(y)

)
. The theorem

follows.
Remark: Notice that we may view the Harnack inequality as a quantitative

version of the strong maximum principle. In particular if u ≥ 0 is a harmonic
function in the bounded connected domain Ω. Then by the strong maximum
principle we know that −u (which is also harmonic) satisfies either −u(x) < 0 in
Ω or there exist a point x0 ∈ Ω such that −u(x0) = 0 in which case −u(x) = 0
in Ω. However the strong maximum principle says nothing if −u(x0) < 0 but
|u(x0)| is small.

But if we assume that u(x0) = ε for some x0 ∈ Ω then the Harnack inequality
states that 0 ≤ u(x) ≤ CKε for all x ∈ K, where K is some compact connected
set containing x0. If ε = 0 then it follows that u = 0 on every compact set in
Ω, that is u = 0 in Ω so we recover the strong maximum principle.

But the estimate 0 ≤ u(x) ≤ CKε is stronger than the strong maximum
principle in that it provides information even if ε > 0.
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Chapter 9

Exercises.

Exercise 1. The following Theorem is known as the weak maximum principle

Theorem: Let u ∈ C2(Ω) ∩ C(Ω) where Ω is a bounded domain. Further-
more assume that ∆u(x) ≥ 0 in Ω. Then

sup
x∈Ω

u(x) ≤ sup
x∈∂Ω

u(x).

Prove this Theorem using the following steps:

Step 1: Assume that x ∈ Ω and that x is a local maximum of u(x) show that
∆u(x) ≤ 0.

(Hint: What do we know about the second derivatives at a local maximum?)

Step 2: Prove the Theorem under the assumption that ∆u(x) > 0.
(Hint: If the Theorem is false can you find a contradiction to step 1?)

Step 3: Define uε(x) = u(x)− ε|x|2 and show that the Theorem is true for uε.
Pass to the limit ε→ 0 and conclude that the Theorem is true for u.

Exercise 2. Assume that u ∈ C(Rn) and that for every φ ∈ Cc(Rn)∫
Rn
u(x)φ(x) = 0.

Show that u(x) = 0.
(Hint: Assume that u(x0) > 0 and let φ(x) = max(δ − |x − x0|, 0) chose δ

small enough and derive a contradiction.)

Exercise 3 a) Let u ∈ C2(Ω) solve ∆u = f(x) in Ω, where Ω ⊂ Rn is some
domain in Rn and f ∈ C(Ω). Show that∫

Ω

(
∇u(x) · ∇φ(x) + φ(x)f(x)

)
dx = 0 (9.1)

71
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for every φ ∈ C1
0 (Ω) ≡ {φ ∈ C1(Ω); φ = 0 on ∂Ω}.

(Hint: Use Green’s formula.)

b) Let u ∈ C2(Rn) and assume that (9.1) holds for every φ ∈ C1(Ω). Prove
that ∆u = f .

(Hint: Look at Exercise 2.)

c) Note that the equation (9.1) makes perfectly good sense even if f /∈ C(Ω)
and in particular (9.1) makes sense even if u ∈ C1(Ω) but u /∈ C2(Ω). We will
say that u is a weak solution of ∆u = f if u ∈ C1(Ω) and if (9.1) holds for every
φ ∈ C1

0 (Ω)
Try to find a weak solution in R3 to

∆u =

{
1 when |x| ≤ 1
0 when |x| > 1.

(Hint: Look for a radial u(x), that is u(x) = u(|x|) = u(r).)

d) Let u be your weak solution form c) and define

v(x) =

{
u(x) when |x| ≤ 1
u(x) + 1

|x| − 1 when |x| > 1.

Then v is continuous and ∆v = 1 when |x| < 1 and ∆v = 0 when |x| > 1.
However, v /∈ C1(R3) prove that v does not satisfy (9.1) and v is therefore not
a weak solution.

Remark: Notice that what we do in this exercise is very similar to what we
did when we defined sub-harmonic functions. Both solutions and sub-harmonic
functions can be defined by using C2. But we may relax the C2 assumption
when we define sub-harmonic functions by using the mean value formula. In
the same way we can relax the notion of solution to weak solution where a weak
solution is defined in a bigger function space (C1 instead of C2). This allows us
to talk about solutions with discontinuous right hand sides such as the solution
in part c).

Exercise 4. Let u ∈ C2(B1(0)) ∩ C(B1(0)) and

∆u = f(x) in B1(0) ⊂ Rn and

u(x) = g(x) on ∂B1(0).

Where f, g ∈ C(Rn) are some given functions. Show that

sup
B1

u ≤ sup
∂B1(0)

g +
1

2n
sup
B1

f−(x),

where f−(x) = max(0,−f(x)).
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(Hint: What equation will v = u + α|x|2 − α solve when α is a constant,
when is v sub-harmonic?)

Exercise 5. Hopf’s Boundary Lemma. Let u ∈ C2(B
+

1 ), where B+
1 = {x ∈

B1; xn > 0}, and

∆u = 0 in B+
1

u = g ∈ C2 on ∂B1 ∩ {xn > 0}
u = 0 on B1 ∩ {xn = 0}.

Assume furthermore that 0 ≤ g and that g is not identically zero.
Then the Hopf boundary lemma states that

∂u(0)

∂xn
> 0,

the important point is that the inequality is strict. The aim of this exercise is
to prove this.

a.) Let u be as above. Show that the maximum principle implies that

∂u(0)

∂xn
≥ 0

b.) Define v(x) to be

v(x) =

{
u(x) if xn ≥ 0
−u(x1, x2, ..., xn−1,−xn) if xn < 0.

Show that v ∈ C2(B1) and that ∆v = 0 in B1.

c.) Use the mean value formula to express ∂v(0)
∂xn

. Use this expression to

show that ∂v(0)
∂xn

> 0.

(Hint: Let en = (0, 0, 0..., 0, 1) as usual, then
∫
B1
div(env(x))dx =

∫
B1

∂v
∂xn

dx,

also if ν is the normal of ∂B1(0) then ν ·en > 0 at points on ∂B1 where xn > 0...)
d.) Use b.) and c.) to prove Hopf’s lemma.

Exercise 6. Suppose that u ∈ C2(Rn+) and that ∆u(x) = 0 in Rn+ and
u(x1, x2, ..., xn−1, 0) = 0. Furthermore assume that lim|x|→∞

(
|x|−1|u(x)|

)
= 0

uniformly.
a) Define

v(x) =

{
u(x) for xn ≥ 0
−u(x1, x2, ..., xn−1,−xn) for xn < 0.

Show that ∆v = 0 in Rn.
b) Use the estimates on the first derivatives of v to prove that ∇v(x) = 0.

Conclude that u(x) = 0.
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Exercise 7. Let Ω be an unbounded domain and assume that

∆ui(x) = f(x) in Ω
ui(x) = g(x) on ∂Ω,

for i = 1, 2.
a) Show that if limΩ3x→∞ |u1(x)− u2(x)| = 0 uniformly then u1 = u2.
b) Assume that Ω = Rn+ and show that if lim|x|→∞

(
|x|−1|u1(x)− u2(x)|

)
=

0 then u1 = u2.
(Hint: Look at Exercise 6.)
c) Assume that Ω ⊂ R2 and that, in polar coordinates, Ω = {(r, φ); φ ∈

(0, φ0)} for some φ0 ∈ (0, 2π). Show that if lim|x|→∞
(
|x|−π/φ0 |u1(x)− u2(x)|

)
=

0 then u1 = u2.
(Hint: Let w(x) = u1(x) − u2(x) − εrπ/φ0 sin(πφ/φ0). Is w(x) harmonic?

Does w(x) have a sign on ∂ (Ω ∩Br(0)) if R is large enough?)

Exercise 8. Use the Harnack inequality to show that if {uj}∞j=1 is an increas-

ing sequence of harmonic functions in the connected domain Ω then if uj(x0)
converges for some x0 ∈ Ω then there exist a harmonic function u0 such that
uj → u0 uniformly on compact sets K ⊂⊂ Ω.

(Hint: What can you say about uj+k − uj for k ≥ 1?)

Exercise 9. Let φε(x) be the standard mollifier. Use the estimate

sup
Rn

∣∣∣∣∂|α|φ(x)

∂xα

∣∣∣∣ ≤ Cα
for any multiindex α together with

∂|α|φε(x)

∂xα
=

1

εn+|α|
∂|α|φ(x/ε)

∂xα

to directly show that if u is harmonic in Ω then for any x0 ∈ Ω∣∣∣∣∂|α|u(x0)

∂xα

∣∣∣∣ ≤ C0Cα
1

dist(x0, ∂Ω)n+|α| ‖u‖L1(Bdist(x0,∂Ω)(x
0)),

for some constant C0.

Exercise 10. Suppose that u is harmonic in Ω. Prove that u2 is sub-harmonic
in Ω.

(Hint: Is u2 ∈ C2(Ω)?)

Exercise 11. Show that the following definition is equivalent to our definition
of sub-harmonicity:

We say that u ∈ C(Ω) is sub-harmonic if for any D ⊂ Ω we have u ≤ h for
all h that are harmonic in D and h ≥ u on ∂D.
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Compactness Properties of
Harmonic Functions.

One of the stated reasons for the importance to develop a regularity theory for
harmonic functions is that estimates implies compactness for harmonic func-
tions. With the Arzela-Ascoli Theorem at hand (see the appendix) we can to
prove the following version of Weierstrass theorem.

Theorem 10.1. Let {uj}∞j=1 be a uniformly bounded sequence of harmonic

functions in the domain Ω. That is, uj ∈ C2(Ω), ∆uj(x) = 0 in Ω and there
exist a constant C0 (independent of j) such that supx∈Ω |uj(x)| ≤ C0.

Then there exists a sub-sequence {ujk}∞k=1 of {uj}∞j=1 that is uniformly con-

vergent on compact sets in Ω and the limit u0(x) = limk→∞ ujk is harmonic in
Ω.

Proof: We want to show that the sequence {uj}∞j=1 is equicontinuous in Ω.
Then the Arzela-Ascoli Theorem assures that there is a sub-sequence converging
uniformly on compact sets of Ω.

To show that the sequence is equicontinuous we notice that for every point
x ∈ Ω2r = {x ∈ Ω; dist(x, ∂Ω) > 2r} we have B2r(x) ⊂ Ω. In particular for
y ∈ Br(x) we have the estimate

∣∣∇uj(y)
∣∣ ≤ √nn22n+1

ωnrn+1
‖uj‖L1(Br(y)).

Using that |uj | ≤ C0 we see that

‖uj‖L1(Br(y)) =

∫
Br(y)

|u(z)|dz ≤ ωnr
n

n
C0.

So for any x ∈ Ω2r we have

∣∣∇uj(y)
∣∣ ≤ n3/22n+1

r
C0, (10.1)
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for every y ∈ Br(x).
To show that {uj}∞j=1 is equicontinuos at x we need, for every ε > 0, to find

a δε > 0 such that

|uj(x)− uj(y)| < ε for all y ∈ Bδε(x),

where δε is independent of j. There is no loss of generality to assume that
δε < r.

By the mean value Theorem (from analysis, not the mean value Theorem
for harmonic functions) we get for some t ∈ (0, 1)

|uj(x)− uj(y)| =
∣∣(y − x) · ∇uj

(
x+ t(y − x)

)∣∣ ≤ n3/22n+1

r
C0|x− y| (10.2)

if |x− y| < r where we also used the estimate (10.1). If we set

δε = inf

(
r

C0n3/22n+1
ε, r

)
,

then (10.2) implies that
|uj(x)− uj(y)| < ε (10.3)

for |x − y| < δε. Since (10.3) is independent of j it follows that {uj}∞j=1 is
equicontinious in Ω.

By the Arzela-Ascoli Theorem it follows that we can find a sub-sequence
{ujk}∞k=1 of {uj}∞j=1 that converges uniformly on compact sets of Ω to some

u0 ∈ C(Ω).
We still need to show that u0 is harmonic. We could do that by applying the

Arzela-Ascoli Theorem to the second derivatives (using estimates on the third
derivatives to show that the second derivatives of {uj}∞j=1 forms an equicontin-
uous sequence). But we will use another argument based on the mean value
Theorem.

Let x0 ∈ Ω and Br(x0) ⊂ Ω. Then since Br(x0) is a compact set we know
that ujk → u0 uniformly Br(x0). In particular for every ε > 0 there exists an
Nε such that |u0(x)− ujk(x)| < ε for all k > Nε and x ∈ Br(x0).

Using this and the mean value property for ujk we see that when k > Nε

ε >
∣∣u0(x0)− ujk(x0)

∣∣ =

∣∣∣∣∣u0(x0)− n

ωnrn

∫
Br(x0)

ujk(y)dy

∣∣∣∣∣ =

=

∣∣∣∣∣u0(x0)− n

ωnrn

∫
Br(x0)

u0(y)dy − n

ωnrn

∫
Br(x0)

(
ujk(y)− u0(y)

)
dy

∣∣∣∣∣ ≥
≥

∣∣∣∣∣u0(x0)− n

ωnrn

∫
Br(x0)

u0(y)dy

∣∣∣∣∣−
∣∣∣∣∣ n

ωnrn

∫
Br(x0)

(
ujk(y)− u0(y)

)
dy

∣∣∣∣∣ ≥
≥

∣∣∣∣∣u0(x0)− n

ωnrn

∫
Br(x0)

u0(y)dy

∣∣∣∣∣− ε
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where we used that |u0(x)− ujk(x)| < ε in Br(x0) in the last inequality.
In particular ∣∣∣∣∣u0(x0)− n

ωnrn

∫
Br(x0)

u0(y)dy

∣∣∣∣∣ < 2ε,

for any ε > 0. That is u0 satisfies the mean value property and is therefore
harmonic.

10.1 Appendix: The Arzela-Ascoli Theorem.

One of the main reasons that we are interested in estimating the derivatives of
a harmonic function is that it gives good compactness properties of solutions,
that is we can show that bounded sequences of solutions converge in Ck. One
of the main compactness theorems for functions is the Arzela-Ascoli Theorem
which we will prove presently. We begin with a definition.

Definition 10.1. Let F be a set of functions defined in Ω. We say that F is
equicontinuous at x ∈ Ω if for every ε > 0 there exist an δx,ε > 0 such that

|f(x)− f(y)| ≤ ε

for all y ∈ Ω such that |x− y| < δx,ε and all f ∈ F .
We also say that F is equicontinuous in Ω if F is equicontinuous at every

x ∈ Ω.

Naturally, we may consider a sequence of functions {fj}∞j=1 defined on Ω as
a set F = {fj ; j ∈ N} and we may therefore say that a sequence {fj}∞j=1 is
equicontinuous at x or in Ω.

Theorem 10.2. Let {fj}∞j=1 be a uniformly bounded sequence of functions de-
fined on Ω, that is supx∈Ω |fj(x)| ≤ C for some C independent of j. Assume
furthermore that {fj}∞j=1 is equicontinuous in Ω. Then there exist a sub-sequence
{fjk}∞k=1 such that fjk(x) converges pointwise.

If we define f0(x) = limk→∞ fjk(x) then fjk → f0 uniformly on compact
subsets and f0 ∈ C(Ω).

Proof: The proof is rather long so we will divide it into several steps.
Step 1: There is a sub-sequence {fjk}∞k=1 that converges pointwise on a

countable dense set of Ω.
Consider the intersection of Ω and the points with rational coordinates ΩQ ≡

Qn∩Ω. Since Qn is countable it follows that ΩQ is countable. Say ΩQ = {yj ; j ∈
N, yj ∈ Qn}.

We will inductively define the sub-sequence {fjk}∞k=1 so that it converges
pointwise on ΩQ.

Consider the sequence {fj(y1)}∞j=1. Since |fj | ≤ C in Ω it follows that

|fj(y1)| ≤ C. In particular {fj(y1)}∞j=1 is a bounded sequence of real numbers.
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We may thus extract a convergent sub-sequence which we will denote {f1,j}∞j=1

where the sub-script 1 indicates that the sequence converges at y1.
Next we make the induction assumption that we have extracted sub-sequences

{fl,j}∞j=1 for each l ∈ {1, 2, 3, ...,m}, such that

1. {fl,j}∞j=1 is a sub-sequence of {fl−1,j}∞j=1 for l = 2, 3, 4, ...,m

2. and fm,j(y
l) converges for l = 1, 2, 3, ...,m.

In order to complete the induction we need to show that we can find a sub-
sequence {fm+1,j}∞j=1 of {fm,j}∞j=1 such that {fm+1,j(y

m+1)}∞j=1 converges.

Arguing as before, we see that {fm,j(ym+1)}∞j=1 is a bounded sequence in
R and we may thus extract a sub-sequence, that we denote {fm+1,j}∞j=1, that
converges.

By induction it follows that for each m ∈ N there exist a sequence {fm,j}∞j=1

such that {fm,j}∞j=1 is a sub-sequence of {fm−1,j}∞j=1 and {fm,j(ym)}∞j=1 is
convergent.

Notice that since {fm,j}∞j=1 is a sub-sequence of {fm−1,j}∞j=1 and {fm−1,j(y
l)}∞j=1

converges for 1 ≤ l ≤ m− 1 it follows that {fm,j(yl)}∞j=1 converges to the same

limit for 1 ≤ l ≤ m− 1. In particular, {fm,j(yl)}∞j=1 converges for all l ≤ m.
Now we define the sequence {fjk}∞k=1 by a diagonalisation procedure

fjk = fk,k.

Noticing that {fjk}∞k=m = {fk,k}∞k=m is a sub-sequence of {fm,j}∞j=1. This
follows from the fact that fk,k is an element of the sequence {fk,j}∞j=1. But
{fk,j}∞j=1 is a sub-sequence of {fm,j}∞j=1 for k ≥ m.

We may conclude that {fjk}∞k=m converges at yl for all l ≤ k. But k is
arbitrary so fjk(yl) converges for every l ∈ N. This proves step 1.

Step 2: The sequence {fjk}∞k=1 converges pointwise in Ω.
It is enough to show that {fjk(x)}∞k=1 is a Cauchy sequence for every x ∈ Ω.

To that end we fix an ε > 0. We need to show that there exist an Nε ∈ N such
that |fjk(x)− fjl(x)| < ε for all k, l > Nε.

Since {fjk}∞k=1 is equicontinuous at x ∈ Ω there exist a δx,ε/3 such that

|fjk(x)− fjk(y)| < ε

3
for all k ∈ N, (10.4)

and y ∈ Ω such that |x− y| < δx,ε/3.
Moreover since ΩQ is dense in Ω there exist an yx ∈ ΩQ such that |x− yx| <

δx,ε/3. In step 1 we showed that fjk(y) was convergent for all y ∈ ΩQ in particular
it follows that {fjk(yx)}∞k=1 is a Cauchy sequence. That is, there exist an
Nyx,ε/3 ∈ N such that

|fjk(yx)− fjl(yx)| < ε

3
for all k, l > Nyx,ε/3. (10.5)
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From (10.4) and (10.5) we can deduce that

|fjk(x)−fjl(x)| ≤ |fjk(x)−fjk(yx)|+ |fjl(x)−fjl(yx)|+ |fjk(yx)−fjl(yx)| < ε,

for all k, l > Nyx,ε/3. It follows that {fjk(x)}∞k=1 is a Cauchy sequence and this
finishes the proof of step 2.

Step 3: Define f0(x) = limk→∞ fjk(x), then f0 ∈ C(Ω).
Since fjk(x) is convergent for every x ∈ Ω by step 2 it follows that f0 is well

defined in Ω. To show continuity we need to show that for every x ∈ Ω and
ε > 0 there exist a δε > 0 such that

|f0(x)− f0(y)| < ε

for every y ∈ Ω such that |x − y| < δε. By equicontinuity there exist a δx,ε/3
such that

|fjk(x)− fjk(y)| < ε

3
(10.6)

for every y ∈ Ω such that |x− y| < δx,ε/3 and all j ∈ N.
Also by step 2 there exist an Nx,ε/3 such that

|f0(x)− fjk(x)| < ε

3
(10.7)

for all k ≥ Nx,ε/3. And an Ny,ε/3 such that

|f0(y)− fjk(y)| < ε

3
(10.8)

for all k ≥ Ny,ε/3.
From (10.6), (10.7) and (10.8) we can deduce that for y ∈ Ω such that

|x− y| < δx,ε/3

|f0(x)− f0(y)| ≤ |f0(x)− fjk(x)|+ |f0(y)− fjk(y)|+ |fjk(x)− fjk(y)| < ε

if k > max(Nx,ε/3, Ny,ε/3).
This proves step 3.

Step 4: {fjk}∞k=1 converges uniformly on compact sets.
We fix a compact set K ⊂ Ω. We need to show that for every ε > 0 there

exist an Nε such that when k > Nε then |f0(x)− fjk(x)| < ε for all x ∈ K.
Notice that by equicontinuity there exist a δx,ε/3 for each x ∈ K such that

for all k ∈ N
|fjk(x)− fjk(y)| < ε

3
(10.9)

for all y ∈ Bδx,ε/3
(x) ∩ Ω.

Notice that the ballsBδx,ε/3
(x) forms an open cover ofK: K ⊂ ∪x∈KBδx,ε/3

(x).

Since K is compact there exist a finite sub-cover Bδ
xl,ε/3

(xl), for l = 1, 2, 3, ..., l0

for some l0 ∈ N. That is K ⊂ ∪l0l=1Bδxl,ε/3
(xl).
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Also, using that limk→∞ fjk(xl) = f0(xl), we see that there exist an Nxl,ε/3
such that

|fji(xl)− fjk(xl)| < ε

3
(10.10)

for all i, k > Nxl,ε/3. We choose Nε = max
(
Nx1,ε/3, Nx2,ε/3, ..., Nxl0 ,ε/3

)
.

SinceK ⊂ ∪l0l=1Bδxl,ε/3
(xl) it follows that for every x ∈ K that x ∈ Bδ

xl,ε/3
(xl)

for some l. Using this and (10.9) and (10.10) we see that

|fji(x)− fjk(x)| ≤ |fji(x)− fji(xl)|+ |fjk(x)− fjk(xl)|+ |fji(xl)− fjk(xl)| <
(10.11)

<
ε

3
+
ε

3
+
ε

3
= ε

for all k ≥ Nε. Taking the limit i→∞ in (10.11) we see that

|f0(x)− fjk(x)| < ε

for all k > Nε. This finishes the proof of the Theorem.



Chapter 11

Existence of Solutions.

11.1 The Perron Method.

We are now ready to prove the existence of solutions to the Dirichlet problem

∆u(x) = 0 in Ω
u(x) = g(x) on ∂Ω.

(11.1)

The idea of the proof is to consider the largest subharmonic function that is
smaller than g on ∂Ω. If a solution to (11.1) exists then, by the maximum
principle, that solution has to be the largest subharmonic function that is less
than or equal to g on ∂Ω. This gives some hope that the largest sub-harmonic
function should be the solution to (11.1).

Before we prove that the largest sub-harmonic function is harmonic we need
to prove a Lemma that shows us that we can change a sub-harmonic function
into a harmonic function in part of the domain without destroying the sub-
harmonicity.

Lemma 11.1. Suppose that v ∈ C(Ω) is sub-harmonic in Ω. Moreover, we
assume that Br0(x0) ⊂ Ω. If we define ṽ to by the harmonic replacement of v
in Br0(x0):

ṽ(x) =

{
v(x) if x ∈ Ω \Br0(x0)∫
∂Br0 (x0)

r2−|x−x0|2
ωnr

1
|x−x0−y|n v(y)dA∂Br0 (x0)(y) for x ∈ Br0(x0).

Then ṽ is sub-harmonic in Ω.

Remark: We say that ṽ is defined by the harmonic replacement in Br0(x0).
This language usage is natural since ṽ equals v outside of Br0(x0) and is defined
by Poisson’s formula in Br0(x0). We know that functions defined by Poisson’s
formula are harmonic so ṽ is defined by replacing the values of v by the harmonic
function with boundary data v in Br0(x0).

At times the harmonic replacement is referred to as the harmonic lifting in
Br0(x0). The reason for that terminology is that, by the maximum principle,

81
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ṽ ≥ v in Br0(x0). So ṽ is defined by increasing, or lifting, the values of v in
Br0(x0).

Proof: Since ṽ is defined by Poisson’s formula in Br(x
0) it follows that ṽ

is harmonic in Br0(x0). Since ṽ is harmonic in Br0(x0) it follows that ṽ is
sub-harmonic in Br0(x0).

Also ṽ = v in Ω \Br0(x0) so ṽ is sub-harmonic in Ω \Br0(x0).
This does not imply that ṽ is sub-harmonic in Ω. We need to show that ṽ

satisfies the sub-meanvalue property for every ball Br0(y) ⊂ Ω.
To that end we fix an arbitrary ball Br(y) ⊂ Ω. If Br(y) ⊂ Ω \ Br0(x0)

then ṽ satisfies the sub-meanvalue property for the ball Br(y) since ṽ = v in
Br(y). Similarly, if Br(y) ⊂ Br0(x0) then ṽ satisfies the sub-meanvalue property
(and even the mean value property) for the ball Br(y) since ṽ is harmonic in
Br(y) ⊂ Br0(x0).

We therefore only need to prove that ṽ satisfies the sub-meanvalue property
for balls Br(y) ⊂ Ω such that Br(y)∩Br0(x0) 6= ∅ and Br(y)∩

(
Ω\Br0(x0)

)
6= ∅.

Fix such a ball Br(y). We continue the proof in several steps.
Step 1: Let h̃ be the harmonic function in Br(y) with h̃(x) = ṽ(x) on

∂Br(y). We claim that h̃ ≥ ṽ in Br(y) \Br0(x0).
Notice that v− ṽ is sub-harmonic in Br0(x0) and that v− ṽ = 0 on ∂Br0(x0).

So by the maximum principle for sub-harmonic functions v ≤ ṽ in Br0(x0).
Also, if we let h solve

∆h = 0 in Br(y)
h = v on ∂Br(y),

then again, by the sub-harmonicity of v and the maximum principle v ≤ h in
Br(y).

Since v ≤ ṽ we have that h ≤ h̃ on ∂Br(y) and since both h and h̃ are
harmonic it follows that h̃ ≥ h in Br(y). That is v ≤ h ≤ h̃ in Br(y).

Using that ṽ = v in Br(y) \Br0(x0) the claim in step 1 follows.

Step 2: Let, as in step 1, h̃ be the harmonic function in Br(y) with h̃(x) =
ṽ(x) on ∂Br(y). We claim that h̃ ≥ ṽ in Br(y) ∩Br0(x0).

By step 1 we know that h̃ ≥ ṽ inBr(y)\Br0(x0). Since ṽ and h̃ are continuous
functions it follows that h̃ ≥ ṽ on

(
∂Br0(x0)

)
∩ Br(y). On

(
∂Br(y)

)
∩ Br0(x0)

we have that h̃ = ṽ by the definition of h̃.
In particular, ∆ṽ = ∆h̃ = 0 in Br0(x0) ∩ Br(y) and ṽ ≤ h̃ on ∂

(
Br0(x0) ∩

Br(y)
)
. It follows that w = ṽ − h̃ solves

∆w = 0 in Br0(x0) ∩Br(y)
w ≤ 0 on ∂

(
Br0(x0) ∩Br(y)

)
.

By the maximum principle w ≤ 0 in Br0(x0)∩Br(y), that is ṽ ≤ h̃ in Br0(x0)∩
Br(y).
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Step 3: ṽ satisfies the sub-meanvalue property in Ω.

Pick any ball Br(y) ⊂ Ω. If Br(y) ∩ Br0(x0) = ∅ we have already shown
that ṽ satisfies the sub-meanvalue property in Br(y). So we may assume that
Br(y) ∩Br0(x0) 6= ∅.

Define h̃ as in step 1 and 2, then

ṽ(y) ≤ h(y) =
1

ωnrn−1

∫
∂Br(y)

h̃(z)dA∂Br(y)(z) =
1

ωnrn−1

∫
∂Br(y)

ṽ(z)dA∂Br(y)(z),

(11.2)

=
1

ωnrn−1

∫
∂Br(y)

ṽ(z)dA∂Br(y)(z),

where we have used step 1 if y ∈ Br(y)\Br0(x0) and step 2 if y ∈ Br(y)∩Br0(x0)
in the first inequality, the meanvalue property for the harmonic function h in
and finally that h̃ = ṽ on ∂Br(y).

Notice that (11.2) is nothing by the sub-meanvalue property for ṽ.
We have thus shown that ṽ satisfies the sub-meanvalue property in Ω and is

thus sub-harmonic.

Definition 11.1. Let g ∈ C(∂Ω) where Ω is a bounded domain. We define
Sg(Ω) to be the class of sub-harmonic functions v ∈ C(Ω) such that v(x) ≤ g(x)
on ∂Ω. That is

Sg(Ω) =
{
v ∈ C(Ω); v is sub-harmonic in Ω and v(x) ≤ g(x) on ∂Ω

}
.

Since g ∈ C(∂Ω) it follows that the constant infx∈∂Ω g(x) ∈ Sg(Ω). That is
Sg(Ω) 6= ∅.

The first part of the existence theorem is:

Theorem 11.1. [Perron’s Method.] Suppose that Ω is a bounded domain
and g(x) ∈ C(∂Ω). Define

u(x) = sup
v∈Sg(Ω)

v(x).

Then u(x) is harmonic in Ω.

Proof: As we remarked before Sg(∂Ω) 6= ∅. Also by the maximum principle
for sub-harmonic functions we have

sup
x∈Ω

(
v(x)− sup

y∈∂Ω
g(y)

)
≤ sup
x∈∂Ω

(
v(x)− sup

y∈∂Ω
(g(y))

)
= sup
x∈∂Ω

(
v(x)

)
− sup
y∈∂Ω

g(y) ≤ 0

for every v ∈ Sg(Ω) since if v ∈ Sg(Ω) then v is sub-harmonic and v ≤ g on ∂Ω.
It follows that

sup
v∈Sg(Ω)

v(x) ≤ sup
y∈∂Ω

g(y).

Using that a non-empty set of real numbers that is bounded from above has
a supremum (the completeness property of R) we may conclude that u(x) =
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supv∈Sg(Ω) v(x) is well defined. Moreover, for every x ∈ Ω we can find a sequence

{vk}∞k=1 in Sg(Ω) so u(x) = limk→∞ vk(x). We fix an arbitrary x0 ∈ Ω and
sequence {vk}∞k=1 such that limk→∞ vk(x0) = u(x0). Since Ω is a domain, in
particular Ω is open, there exist an r > 0 such that Br(x

0) ⊂ Ω.
We may assume that

vk ≥ inf
x∈∂Ω

g(x). (11.3)

If (11.3) where not true then we could consider the sequence max
(
vk(x), infx∈∂Ω g(x)

)
∈

Sg(Ω) instead.
In order to proceed we define the harmonic replacement of vk in Br(x

0)
according to

ṽk(x) =

{
vk(x) if x /∈ Br(x0)∫
∂Br(x0)

r2−|x−x0|2
ωnr

1
|x−x0−y|n v

k(y)dA∂Br(x0)(y) for x ∈ Br(x0).

Notice that ṽk is defined by the Poisson integral in Br(x
0). It follows that

∆ṽk(x) = 0 in Br(x
0)

ṽk(x) = vk(x) on ∂Br(x
0).

By Lemma 11.1 it follows that ṽk is sub-harmonic in Ω and since ṽk = vk ≤ g
on ∂Ω it follows that ṽk ∈ Sg(Ω).

Moreover, since vk is sub-harmonic and ṽk is harmonic in Br(x
0) and ṽk = vk

on ∂Br(x
0) we can conclude that ṽk ≥ vk in Br(x

0). Also u(x0) ≥ ṽk(x0) since
ṽk ∈ Sg(Ω).

It follows that

u(x0) = lim
k→∞

vk(x0) ≤ lim
k→∞

ṽk(x0) ≤ u(x0),

so ṽk(x0)→ u(x0).
From the compactness Lemma 10.1 we know that there exist a sub-sequence

{ṽkj}∞j=1 of {ṽk}∞k=1 such that ṽkj → ṽ0 uniformly on compact sets in Br(x
0)

and that ṽ0 is harmonic in Br(x
0).We claim that ṽkj (x) → u(x) uniformly on

compact sets in Br(x
0).

By the definition of u it follows that u ≥ ṽ0 in Br(x
0).

Claim: We claim that u(x) = ṽ0(x) for all x ∈ Br(x0). Since x0 i arbitrary
this implies that ∆u(x) = 0 in any ball Bs(y) ⊂ Ω and finishes the proof of the
theorem.

We prove this claim by an argument of contradiction. Aiming for a contra-
diction we assume that there exist a z ∈ Br(x0) such that ṽ0(z) < u(z). Since
u(z) = supw∈Sg(Ω) w(z) there exist a w ∈ Sg(Ω) such that ṽ0(z) < w(z).

We define wj = sup(w, ṽkj ). Then wj is sub-harmonic since w and ṽkj are
sub-harmonic.

We also define the harmonic lifting of wj according to

w̃j(x) =

{
wj(x) if x /∈ Br(x0)∫
∂Br(x0)

r2−|x−x0|2
ωnr

1
|x−x0−y|nw

j(y)dA∂Br(x0)(y) for x ∈ Br(x0)
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Arguing as before, using the maximum principle, we see that w̃j ≥ wj . Notice
that

w̃j ≥ wj = sup(w, ṽkj ) ≥ ṽkj . (11.4)

Using Lemma 10.1 again we can extract a sub-sequence {w̃jl}∞l=1 of {w̃j}∞j=1 such

that {w̃jl}∞l=1 converges uniformly on compact sets to some harmonic function
w̃0. Notice that

w̃0(z) = lim
l→∞

w̃jl(z) ≥ lim
l→∞

wjl(z) = lim
l→∞

sup(w(z), ṽkjl (z)) = w(z). (11.5)

In particular this imples that

w̃0(z) > ṽ0(z). (11.6)

Also, since
u(x0) ≥ w̃jl(x0) ≥ ṽkjl (x0)→ u(x0)

we get that w̃0(x0) = u(x0). Using (11.4), (11.5) and that w̃0(x0) = ṽ0(x0) =
u(x0) we get

∆(ṽ0(x)− w̃0(x)) = 0 in Br(x
0)

ṽ0(x)− w̃0(x) ≤ 0 on ∂Br(x
0)

ṽ0(x0)− w̃0(x0) = 0.

From the last two lines and the strong maximum principle we can conclude that
ṽ0(x)− w̃0 = 0 in Br(x

0). This contradicts (11.6).
We have thus finished our contradiction argument and proved that ṽkj → u0

uniformly on compact sets in Br(x
0). But limj→∞ ṽkj = ṽ0 where ∆ṽ0 = 0 in

Br(x
0). It follows that ∆u(x) = 0 in Br(x

0). But x0 ∈ Ω was arbitrary so we
may conclude that ∆u(x) = 0 in Ω.

11.2 Attaining the Boundary Data.

In the previous section we showed that

u(x) = sup
v∈Sg(Ω)

v(x)

is harmonic in Ω. This is not enough in order to show existence of solutions to
the Dirichlet problem

∆u(x) = 0 in Ω
u(x) = g(x) on ∂Ω.

Perron’s method gives a harmonic function but it does not prove that the har-
monic function actually attain the boundary values u(x) = g(x). In order to
solve the Dirichlet problem we need to show that the solution attained from the
Perron process actually satisfy the boundary data.

We will show that, at least in some cases, by the method of using barriers.
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Definition 11.2. Let Ω be a domain and ξ ∈ ∂Ω. We say that w is a barrier
at ξ relative to Ω if

1. w ∈ C(Ω),

2. w > 0 in Ω \ {ξ}, w(ξ) = 0 and

3. w is super-harmonic in Ω.

If Ω is a domain and there exist a barrier at ξ relatively to Ω then we say
that ξ is a regular point of ∂Ω.

Theorem 11.2. Let Ω be a bounded domain and g ∈ C(∂Ω). Furthermore let

u(x) = sup
v∈Sg(Ω)

v(x).

If ξ is a regular point of ∂Ω then

lim
x→ξ

u(x) = g(ξ).

Proof: We need to find, for each ε > 0, a δε > 0 such that

sup
x∈Bδε (ξ)∩Ω

|u(x)− g(ξ)| < ε.

Since g ∈ C(∂Ω) there exist an δg,ε/2 such that

sup
x∈∂Ω∩Bδg,ε/2 (ξ)

|g(x)− g(ξ)| < ε

2
.

Let w be a barrier at ξ and define

κ = inf
x∈∂Ω\Bδg,ε/2 (ξ)

w(x).

Using that w > 0 in Ω \ {ξ}, ∂Ω is compact and w ∈ C(Ω) we see that κ > 0.
If we define

k =
1

κ
sup
x∈∂Ω

|g(x)− g(ξ)|

then it follows that

− ε
2
− kw(x) ≤ g(x)− g(ξ) ≤ ε

2
+ kw(x). (11.7)

We know that w ∈ C(Ω) and w(ξ) = 0 so there is a δw,ε/(2k) such that

sup
x∈Bδw,ε/(2k)

(ξ)

|w(x)| < ε

2k
. (11.8)
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Since w is super-harmonic it follows from the comparison principle and (11.7)
that

v(x) ≤ g(ξ) +
ε

2
+ kw(x) (11.9)

for every v ∈ Sg(Ω).
From (11.9) it follows that

u(x) ≤ g(ξ) +
ε

2
+ kw(x). (11.10)

Since w is super-harmonic it follows that g(ξ)− ε
2 − kw(x) is sub-harmonic

so by (11.7) it follows that − ε
2 − kw(x) ∈ Sg(Ω). In particular

u(x) ≥ g(ξ)− ε

2
− kw(x). (11.11)

From (11.10) and (11.11) we deduce that

|u(x)− g(ξ)| ≤ ε

2
+ kw(x). (11.12)

Finally we see that if δ < δw,ε/2k and x ∈ Bδ(ξ) ∩ Ω then, from (11.12) we
may estimate

|u(x)− g(ξ)| ≤ | ε
2

+ kw(x)| < ε

2
+
kε

2k
= ε

where we used (11.8) in the strict inequality. This proves the Theorem.
We are now in the position to create harmonic functions by the Perron

method and we also have a criteria to assure that the function so created satisfies
the boundary values.

The criteria that assures that the Perron solution assumes the boundary data
at ξ ∈ ∂Ω is that there exists a barrier at ξ relative to Ω. Since the definition
of a barrier is rather abstract we need to develop some adequate theory for the
existence of barriers.

The simplest condition that assures the existence of a barrier is the exterior
ball condition.

Definition 11.3. Let Ω be a domain. We say that Ω satisfies the exterior ball
condition at ξ if there exist a ball Bs(y

ξ) ⊂ Ωc such that ξ ∈ Bs(yξ) ∩ Ω
We say that the domain Ω satisfies the exterior ball condition if Ω satisfies

the exterior ball condition at every ξ ∈ ∂Ω.
We say that that the domain Ω satisfies the exterior ball condition uniformly

if Ω satisfies the exterior ball condition at every ξ ∈ ∂Ω and the radius of the
touching balls have radius s > 0 independent of ξ.

Lemma 11.2. Let Ω be a bounded domain and assume that Ω satisfies the
exterior ball condition at ξ ∈ ∂Ω.

Then ξ is a regular point of ∂Ω. That is there exist a barrier at ξ relatively
to Ω.
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Proof: Let the touching ball at ξ be Bs(y). We define the the following
function that is zero on ∂Bs/2((ξ + y)/2)

w(x) =

 ln
∣∣∣x− y+ξ

2

∣∣∣− ln
(
s
2

)
if n = 2

2n−2

sn−2 − 1

|x− y+ξ
2 |n−2 if n ≥ 3.

Since w is a multiple of the Newtonian potential plus a constant it is clear that
∆w(x) = 0 in Rn \ {(y − ξ)/2}.

Notice that Bs/2((ξ + y)/2) touches ∂Ω at only the point ξ ∈ ∂Ω. The
original ball Bs(y) might touch at a larger set.

Moreover w(x) = 0 on ∂Bs/2((y + ξ)/2), w > 0 in Rn \ Bs/2((y + ξ)/2).

Finally notice that ξ ∈ ∂Bs/2((yξ − ξ)/2) so w(ξ) = 0. It follows that w is a
barrier.

A somewhat stronger sufficient (but not necessary) condition for a the exis-
tence of a barrier is the exterior cone condition.

Definition 11.4. Let Ω be a domain. We say that Ω satisfies the exterior cone
condition at ξ relative to Br(ξ) if Ωc ∩ Br(ξ) contains a circular cone. That is
if there exist a κ > 0 and a unit vector η such that

{x ∈ Br(ξ); η · (x− ξ) > 0 and |x− η · (x− ξ)| < κ|x− ξ|} ⊂ Ωc.

We say that the domain Ω satisfies the exterior cone condition if Ω satisfies
the exterior cone condition at every ξ ∈ ∂Ω with respect to some ball Brξ(ξ) and
rξ > 0 and some κξ > 0.

We say that that the domain Ω satisfies the exterior cone condition uniformly
if Ω satisfies the exterior cone condition at every ξ ∈ ∂Ω with respect to some
ball Br(ξ) and r > 0 and some κ > 0 where r and κ is independent of ξ.

Proposition 11.1. Let Ω be a bounded domain and assume that Ω satisfies the
exterior cone condition at ξ ∈ ∂Ω.

The ξ is a regular point of ∂Ω. That is there exist a barrier at ξ relatively
to Ω.

Proof (only in R2 and R3 (sort of)): There is no loss of generality to assume
that ξ = 0. If ξ 6= 0 we may simply translate the coordinate system by the
translation x→ x− ξ to attain this situation.

By assumption there exist a unit vector η and r, κ > 0 such that

Kκ = {x ∈ Bs(0); η · x > 0 and |x− η · x| < κ|x|} ⊂ Ωc.

By rotation the coordinate system we may assume that η = en.
Proof in R2: If we change to polar coordinates x1 = r sin(φ) and x2 =

r cos(φ) then the cone becomes

Kκ = {(r, φ); | sin(φ)| < κ, sin(φ) > 0}.
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Recalling that Laplace’s equation in polar coordinates is

∆w(r, φ) =
∂2w(r, φ)

∂r2
+

1

r

∂w(r, φ)

∂r
+

1

r2

∂2w(r, φ)

∂φ2
= 0

it is easy to verify that

w(r, φ) =
√
r sin

(
φ

2

)
is harmonic in R2 \K and w(r, φ) =

√
rκ > 0 on ∂K. So w(r, φ) is a barrier at

ξ = 0 relative to Ω.

Sketch of the proof in Proof in R3: Laplace equation in spherical coor-
dinates, (x1, x2, x3) = r(sin(ψ) cos(φ), sin(ψ) sin(φ), cos(ψ), is

∂2w(r, φ, ψ)

∂r2
+

2

r

∂w(r, φ, ψ)

∂r
+

1

r2 sin(ψ)

∂

∂ψ

(
sin(ψ)

∂w(r, φ, ψ)

∂ψ

)
+

+
1

r2 sin2(ψ)

∂2w(r, φ, ψ)

∂φ2
= 0.

To simplify the expression somewhat we assume that we can find a solution
w(r, φ, ψ) = rαw̃(ψ) that is independent of φ and homogeneous in r. Taking
into consideration that we also want our barrier to be zero on ∂Kκ/2 we end up
with the following ordinary differential equation

rα−2
(
α(α+ 1)w̃(r, ψ) + 1

sin(ψ)
∂
∂ψ

(
sin(ψ)∂w̃(r,ψ)

∂ψ

))
= 0 in Kκ/2

w̃(r, ψ) = 0 on ∂Kκ/2.

It turns out that this ordinary differential equation is solvable and that there
exists a unique ακ > 0 such that the solution is positive in R3 \Kκ. It follows
that w(r, φ, ψ) = rακw̃(r, φ, ψ).

Knowing that we have barriers in some cases it is natural to ask the question
if we always have barriers. The answer to that is: No.

Example of a non-regular point: Consider the domain Ω = B1(0) \ {0},
for simplicity we assume that n ≥ 3. We want to solve the Dirichlet problem

∆u(x) = 0 in Ω
u(x) = g(x) on ∂Ω

where
g(x) = 0 on Ω \ {0}
g(0) = −1.

By the Perron method we would want to construct the solution

u(x) = sup
v∈Sg(Ω)

v(x).
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Notice that for any j ∈ N

wj(x) = max

(
−1

j

1

|x|n−2
,−1

)
∈ Sg(Ω).

In particular, wj is the supremum of two harmonic functions and is thus sub-
harmonic. Also both − 1

j
1

|x|n−2 and −1 are less than g on ∂Ω. Since wj ∈ Sg(Ω)

we have
u(x) ≥ wj(x)

for all j ∈ N. But wj(x) → 0 as j → ∞ for every x ∈ Ω. This implies that
u(x) ≥ 0. But the maximum principle implies that u(x) ≤ supx∈∂Ω g(x) = 0.
That is u(x) = 0. So limx→0 u(x) = 0 6= −1 = g(0) and therefore there is no
barrier at ξ = 0.

In general we have a barrier at ξ if the complement on Ω is “large” close to
ξ. In the above example the complement of Ω near the origin consists of just
one point and that is why we do not have a barrier at the origin.

11.3 Existence of Solutions to the Dirichlet Prob-
lem.

We can now prove our first general existence Theorem for the Dirichlet problem.

Theorem 11.3. Let Ω be a bounded domain that satisfies the exterior cone
condition. Moreover, assume that f ∈ Cαc (Rn) and g ∈ C(∂Ω).Then there
exists a unique solution to

∆u(x) = f(x) in Ω
u(x) = g(x) on ∂Ω.

(11.13)

Proof: We know that, if N is the Newtonian potential then

v(x) =

∫
Rn
N(x− y)f(y)dy

solves ∆v(x) = f(x) in Rn. It is therefore enough to show that there exist a
solution to

∆w(x) = 0 in Ω
w(x) = g̃(x) = g(x)− v(x) on ∂Ω,

(11.14)

since then u(x) = v(x) + w(x) would be a solution to (11.13).
By the Perron process we can find a harmonic function

w(x) = sup
h∈Sg̃(Ω)

h(x) (11.15)

and since every point in ∂Ω is regular it follows from Theorem 11.2 that limx→ξ w(x) =
g̃(ξ) for any ξ ∈ ∂Ω. It follows that the function defined by (11.15) solves the
boundary value problem (11.14).
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Uniqueness is an easy consequence of the maximum principle. In particular if
u1 and u2 are two solutions to (11.13) then u1(x)−u2(x) is a harmonic function
with zero boundary data in Ω. From the maximum principle we can deduce
that u1(x)− u2(x) = 0, that is u1 = u2.
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Chapter 12

Exercises:

Exercise 1. Let g ∈ C(∂Ω) where Ω is a bounded domain. Define the Perron
solution

u(x) = sup
v∈Sg(Ω)

v(x).

Assume that u is sub-harmonic and prove that ∆u(x) = 0 in Ω.

(Hint: Consider the harmonic replacement ũ in some ball Br(x) ⊂ Ω. Use
comparison to conclude that ũ ≥ u, how does that relate to the definition of u?)

Remark: The above proof is much simpler than the one we gave during
the lectures. The reason that we did not use that proof is that in order to
show that u is sub-harmonic one need to show that u is integrable. That is
to show that the supremum of an uncountable family of integrable functions is
integrable. That requires measure theory (and also a slightly different definition
of subharmonicity) which we do not assume for this course.

Exercise 2. Let Ω = B1(0) \ {x ∈ R3; x1 = x2 = 0} be the unit ball in R3

minus the x3−axis. Show that the origin is not a regular point with respect to
Ω.

(Hint: How did we prove that the origin was not regular with respect to the
punctured disk B1(0) \ {0} in R2? What is the relation between the punctured
disk in R2 and Ω?)

Exercise 3. We say that u ∈ C(Ω) is a viscosity solution to ∆u(x) = 0 in Ω if
for any second order polynomial p(x) the following holds:

1. if u(x)− p(x) has a local maximum at x0 then ∆p(x) ≤ 0 and

2. if u(x)− p(x) has a local minimum at x0 then ∆p(x) ≥ 0.

Prove that if u ∈ C2(Ω) is harmonic then u is a viscosity solution to ∆u(x) = 0.
Prove that if u ∈ C2(Ω) is a viscosity solution to ∆u(x) = 0 then u(x) is
harmonic.
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(Hint: Assume that 1 or 2 holds at a point x0 ∈ Ω what is the second order
Taylor expansion at x0?)

Exercise 4. Assume that u ∈ C2(Ω) is a solution to the following partial
differential equation

∆u(x) = u(x) in Ω
u(x) = 0 on ∂Ω.

Prove that u(x) = 0 in Ω.

Exercise 5. Prove that any convex function is subharmonic.



Chapter 13

Variable coefficients.

So far we have been able to show existence for solutions to the Dirichlet problem
for Laplace equation. It is of some interest to generalize that result to more
general equations. We will consider the following general elliptic second order
PDE,∑n

i,j=1 aij(x) ∂
2u(x)

∂xi∂xj
+
∑n
i=1 bi(x)∂u(x)

∂xi
+ c(x)u(x) = f(x) in Ω

u(x) = g(x) on ∂Ω
(13.1)

where Ω is some bounded domain, g ∈ C(∂Ω), aij(x), bi(x), c(x) and f(x) are
given functions.

Equation (13.1) is to general for us to be able to say anything specific about
the solution u(x). We need to impose some conditions on aij(x), bi(x) and c(x)
to assure that the solutions are “well behaved”.

A powerful tool we used in the solution of the Laplace equation was the
maximum principle. To assure that solutions u(x) to (13.1) satisfy the maximum
principle we make the following definition.

Definition 13.1. We say that an partial differential, equation defined a domain
Ω,

n∑
i,j=1

aij(x)
∂2u(x)

∂xi∂xj
+

n∑
i=1

bi(x)
∂u(x)

∂xi
+ c(x)u(x) = f(x)

is strictly elliptic in Ω if there exists a constant λ > 0 such that for all x ∈ Ω

n∑
i,j=1

aij(x)ξiξj ≥ λ|ξ|2

for any vector ξ = (ξ1, ξ2, ..., ξn).

Remark: If we let A be the matrix with coefficients aij(x) then the ellip-
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ticity condition say that

[
ξ1 ξ2 · · · ξn

]

a11(x) a12(x) · · · a1n(x)
a21(x) a22(x) · · · a2n(x)
...

...
. . .

...
an1(x) · · · ann(x)



ξ1
ξ2
...
ξn

 ≥ λ|ξ|2.
This is the same as demanding that all (generalized) eigenvalues1 of A are
greater than λ.

One might ask what ellipticity has to do with the maximum principle. A
simple example will suffice to show that ellipticity is related to the maximum
principle.

Example: Let Ω be a bounded domain, ε > 0 and u(x) ∈ C2(Ω)∩C(Ω) be
a solution to

n∑
i,j=1

aij(x)
∂2u(x)

∂xi∂xj
+

n∑
i=1

bi(x)
∂u(x)

∂xi
+ c(x)u(x) = ε in Ω.

Assume furthermore, for simplicity, that aii(x) = ai(x) and aij(x) = 0 for i 6= j,
aii(x) ≥ 1 (that is the PDE is elliptic with λ = 1) and that c(x) ≤ 0. Then
u(x) does not have any non-negative interior maximum.

This is quite obvious. We argue by contradiction and assume that u(x)
has an interior non-negative maximum at x0 ∈ Ω. Then ∇u(x0) = 0 and
∂2u(x0)
∂x2
i
≤ 0. We can thus calculate

0 < ε =

n∑
i=1

aii(x
0)
∂2u(x0)

∂x2
i︸ ︷︷ ︸

≤0

+

n∑
i=1

bi(x
0)
∂u(x0)

∂xi︸ ︷︷ ︸
=0 since ∇u=0

+ c(x0)u(x0)︸ ︷︷ ︸
≤0

≤ 0,

where we used that aii(x
0) ≥ 1, and c(x) ≤ 0 by assumption and that u(x0) ≥ 0

since x0 is the non-negative maximum. Clearly this is a contradiction. In
particular, elliptic PDE with c(x) ≤ 0 seems to satisfy a maximum principle.

Remark on different kinds of PDE: We will only study elliptic PDE in
this course. However, there are other classes of important PDE that appears
in the applied sciences. Besides elliptic the most important classes of PDE are
parabolic and hyperbolic.

The heat equation,

∆u(x, t)− ∂u(x, t)

∂t
= 0,

is the archetypical parabolic equation. A parabolic equation is, more or less, an
elliptic equation minus a time derivative.

1Since
∂2u(x)
∂xi∂xj

=
∂2u(x)
∂xi∂xj

for a C2 function there is no loss of generality to assume that A

is diagonalizable and thus that the n eigenvalues exists.
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The third important class of equations is represented by the wave equation

∆u(x, t)− ∂2u(x, t)

∂t2
= 0.

The wave equation is the basic representative of the hyperbolic PDE.
Of the three classes of PDE one can say that elliptic and parabolic are the

most similar. Most of the results for elliptic PDE also exist for parabolic PDE.
For instance the maximum principle (suitably interpreted) and the regularity
theory that we develop also exist for parabolic PDE. However, one needs to
formulate the problems and results slightly different for parabolic PDE since
the PDE has a time variable t. We will not discuss parabolic or hyperbolic
equations in this course.

13.1 The maximum Principle for Elliptic PDE.

For simplicity we will write, for any u ∈ C2(Ω)

Lu(x) =

n∑
i,j=1

aij(x)
∂2u(x)

∂xi∂xj
+

n∑
i=1

bi(x)
∂u(x)

∂xi
+ c(x)u(x) in Ω, (13.2)

where L is an elliptic operator, aij(x), bi(x), c(x) ∈ C(Ω).

Lemma 13.1. [The weak maximum principle.] Suppose that u ∈ C2(Ω),
where Ω is a bounded domain, and Lu(x) = f(x) where f(x) ∈ C(Ω). Assume
that

1. c(x) ≤ 0 and f(x) > 0 or

2. c(x) < 0 and f(x) ≥ 0.

The u(x) does not achieve a positive local maximum in Ω.
In particular, if u ∈ C2(Ω) ∩ C(Ω) then

sup
Ω
u(x) = sup

∂Ω
u(x).

Proof: The proof is very similar to the example in the previous section.
We argue by contradiction and assume that u(x0) > 0 and that x0 is a local
maximum for u(x). Then

n∑
i,j=1

aij(x)
∂2u(x)

∂xi∂xj
+

n∑
i=1

bi(x)
∂u(x)

∂xi
=

= −c(x)u(x) + f(x)︸ ︷︷ ︸
>0 at x0

.

Since u(x0) is a local maximum we can conclude that ∇u(x0) = 0 and
D2u(x0) is a non-positive matrix.



98 CHAPTER 13. VARIABLE COEFFICIENTS.

In particular,

0 <

n∑
i,j=1

aij(x
0)
∂2u(x0)

∂xi∂xj
+

n∑
i=1

bi(x
0)
∂u(x0)

∂xi︸ ︷︷ ︸
=0

=

n∑
i,j=1

aij(x
0)
∂2u(x0)

∂xi∂xj
(13.3)

If we can show that the right hand side in (13.3) is non positive we get the
desired contradiction.

Since the matrix A(x0) = [aij(x
0)]ij is strictly positive by ellipticity it has

a square root
√
A. Also −D2uε(x

0) is non-negative so it has a square root√
−D2u(x0). Now we notice that

n∑
i,j=1

aij(x
0)
∂2u(x0)

∂xi∂xj
= trace

(
A ·D2u(x0)

)
=

= −trace
(
A ·
(
−D2u(x0)

))
= −trace

(√
A
√
A
√
−D2u(x0)

√
−D2u(x0)

)
=

= −trace

((√
A
√
−D2u(x0)

)T √
A
√
−D2u(x0)

)
≤ 0,

where we have used linear algebra freely and that the last inequality follows
from trace(CT · C) =

∑n
i,j=1(cij)

2 ≥ 0 for any matrix C. This finishes the
proof.

Corollary 13.1. [The Comparison Principle.] Let Ω be a bounded domain
and u, v ∈ C2(Ω) ∩ C(Ω) satisfy

Lu(x) ≥ Lv(x) in Ω
u(x) ≤ v(x) on ∂Ω.

Then, if c(x) ≤ 0, it follows that u(x) ≤ v(x) in Ω.

Proof: The proof is simple, and follows directly from Lemma 13.1 if Lu(x) >
Lv(x) since then L(u− v) > 0 and can not archive a positive maximum.

We will modify the function u − v by a function w to obtain the strict
inequality and then use Lemma 13.1 to prove the Corollary.

To that end we define

w(x) = eNr
2

− eN |x|
2

,

where r is chosen large enough that w(x) ≥ 0 in Ω and N is to be determined
later. Notice that

Lw(x) =

n∑
i,j=1

aij(x)
(
−2Nδij − 4N2xixj

)
eN |x|

2

+ (13.4)

+

n∑
i=1

bi(x) (−2Nxi) e
N |x|2

︸ ︷︷ ︸
≤2NeN|x|2 |x| supΩ |b(x)|

+ c(x)(eNr
2

− eN |x|
2

)︸ ︷︷ ︸
≤0

≤
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≤
n∑

i,j=1

aij(x)
(
−2Nδij − 4N2xixj

)
eN |x|

2

+ 2NeN |x|
2

|x| sup
Ω
|b(x)|,

where we used that c(x) ≤ 0 and w ≥ 0 in Ω. We need to estimate

n∑
i,j=1

aij(x)
(
−2Nδij − 4N2xixj

)
= −2N

n∑
i=1

aii(x)− 4N2
n∑

i,j=1

aij(x)xixj ≤

(13.5)
≤ −2Nλ− 4N2λ|x|2,

since the first sum is just the trace of A and the second sum can be estimated
from below by λ|x|2 by the definition of ellipticity with ξ = x.

Using (13.5) in the estimate (13.4) we can conclude that

Lw(x) ≤ −4N2λ

(
1

2N
+ |x|2 − |x| supΩ |b(x)|

2Nλ

)
eN |x|

2

= (13.6)

= −4N2λ


(
|x| − B

4Nλ

)2

︸ ︷︷ ︸
≥0

+
1

2N
− 1

N2

(
B

4λ

)2

 eN |x|
2

< 0,

where B = supΩ |b(x)| and the last inequality follows if N is large enough.
In particular Lw(x) < 0, so w(x) is a super-solution.
Now consider

hε(x) = u(x)− v(x)− εw(x).

Then
Lhε(x) > 0 in Ω
hε(x) ≤ −εw(x) on ∂Ω.

We may conclude, from Lemma 13.1, that hε can not obtain an interior maxi-
mum. Thus, for any ε > 0,

sup
Ω

(u(x)− v(x)− εw(x)) ≤ ε sup
∂Ω

(−w).

If we let ε→ 0 this implies that

sup
Ω

(u(x)− v(x)) ≤ 0⇒ u(x) ≤ v(x).

Corollary 13.2. Let Ω be a bounded domain and u, v ∈ C2(Ω) ∩ C(Ω) satisfy

Lu(x) = Lv(x) in Ω
u(x) = v(x) on ∂Ω.

Then, if c(x) ≤ 0, it follows that u(x) = v(x) in Ω.

Proof: By the previous Corollary it follows that u(x) ≤ v(x) and v(x) ≤ u(x)
in Ω.
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Chapter 14

Apriori estimates.

We know that the solutions to

Lu(x) =
∑n
i,j=1 aij(x) ∂

2u(x)
∂xi∂xj

+
∑n
i=1 bi(x)∂u(x)

∂xi
+ c(x)u(x) = f(x) in Ω

u(x) = g(x) on ∂Ω
(14.1)

are unique, if they exist. The difficult part is to prove existence. That will take
considerable effort. We will start lay the foundations of the existence theory
in this chapter. In the next section we will prove sketch a strategy of how to
solve the problem. In particular, we will try to motivate the need for apriori
estimates. Then we will prove the estimates for the Laplace equation. At the
end of the chapter we will prove existence in a very basic case and use that basic
case as a springboard for a continued discussion of the strategy.

14.1 Discussion.

We need to find an approach to analyze a very difficult equation. We are in
particular interested in showing existence of solutions. One way to approach the
problem is to first consider operators L that somehow are close to the Laplace
equation - which we can solve. Let us consider

Ltu(x) = ∆u(x) + t (L−∆)u(x),

then L0 = ∆ and L1 = L so, at least intuitively, Lt ≈ ∆ for small t and for
t = 1 we are back at the general case. If we assume that, for every small t, there
exists a solution ut(x) to the following equation

Ltut(x) = f(x) in Ω
ut(x) = g(x) on ∂Ω.

Then for t small we would expect ut(x) ≈ u0(x) + tu1(x) for some functions
u0(x) and u1(x). What equations would we have to solve to calculate u0 and
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u1? If we set t = 0 we get, since L0· = ∆·,

L0u0(x) = ∆u0(x)f(x) in Ω
u0(x) = g(x) on ∂Ω,

which is fine since we know how to solve the Dirichlet problem for the Lapla-
cian. However to calculate u1(x) we would need to solve, and here I am rather
informal,

f(x) = Ltut(x) ≈ ∆(u0+tu1)+t (L−∆) (u0+tu1) ≈ ∆u0︸︷︷︸
=f(x)

+t
(
∆u1 + (L−∆)u0

)
,

where we have disregarded terms of order t2. We see that we need to solve

∆u1(x) = (∆− L)u0(x), (14.2)

Equation (14.2) is in principle fine since we can solve the Dirichlet problem and
the right hand side is well defined. But we have only shown that u0 ∈ C2(Ω)
so the right hand side of (14.2) is, as far as we know, only continuous. But we
need the right hand side to be Cα to solve (14.2).

In general, we will need to improve our regularity results so that ∆u(x) =
f(x) ∈ Cα implies that u ∈ C2,α. We will prove this in the next section and also
show that these estimates are strong enough to show existence in some simple
cases.

14.2 Interior Aproiri Estimates for the Lapla-
cian.

Sinc eour aim in this section is to estimate
∣∣D2u(x)−D2u(y)

∣∣ where ∆u(x) =
f(x) we need to have a better understanding of the Newtonian kernel which we
will provide in the next lemma.

Lemma 14.1. Let x, y ∈ Rn, |x− y| = r and

Nij(x) =
∂2N(x)

∂xi∂xj

be the second derivatives of the Newtonian kernel. Then,

|Nij(x− ξ)−Nij(y − ξ)| ≤
C|x− y|
|x− ξ|n+1

for any ξ ∈ Rn \B2r(x).

Proof: Fix a ξ ∈ Rn \ B2r(x). Then N(z − ξ) ∈ C∞(Rn \ {z = ξ}). In
particular, N(z − ξ) ∈ C∞(B3r/2(x)) so we may calculate

|Nij(x− ξ)−Nij(y − ξ)| =
∣∣∣∣∫ 1

0

(x− y) · ∇Nij(sx+ (1− s)y − ξ)ds
∣∣∣∣ ≤
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≤ |x− y| sup
z∈Br(x)

|∇Nij(z − ξ)| . (14.3)

Next we notice that

sup
z∈Br(x)

|∇Nij(z − ξ)| ≤ sup
z∈B|ξ−x|+r(0)\B|ξ−x|−r

|∇Nij(z)| .

But since

N(z) = N(x) =

{
− 1

2π ln(|x|) for n = 2
− 1

(n−2)ωn
1

|x|n−2 for n 6= 2,

It follows that

sup
z∈B|ξ−x|+r(0)\B|ξ−x|−r

|∇Nij(z)| ≤
Cn

(|ξ − x| − r)n+1
, (14.4)

but if ξ ∈ Rn \B2r(x) it clearly follows that

|ξ − x| − r ≥ 1

2
|ξ − x|

from which we may conclude that

sup
z∈B|ξ−x|+r(0)\B|ξ−x|−r

|∇Nij(z)| ≤
Cn2n

(|ξ − x|)n+1
.

Using this last inequality together with (14.4) and (14.3) will result in

|Nij(x− ξ)−Nij(y − ξ)| ≤
Cn2n|x− y|
(|ξ − x|)n+1

which is the conclusion of the Lemma up to the naming of a constant.

Theorem 14.1. Let f(x) ∈ Cαc (B2R(0)) for some 0 < α < 1 and define

u(x) =

∫
Rn
N(x− ξ)f(ξ)dξ

then for any x, y ∈ BR(0), x 6= y, the following inequality holds∣∣∣ ∂2u(x)
∂xi∂xj

− ∂2u(y)
∂xi∂xj

∣∣∣
|x− y|α

≤ Cα,n

(
[f ]Cα(B2R(0)) +

|x− y|1−α supBR(0) |f(x)|
R

)
.

(14.5)
In particular, u ∈ C2,α(BR(0)) and

[D2u]Cα(BR(0) ≤ Cα,n
(

[f ]Cα(B2R(0)) +
supBR(0) |f(x)|

Rα

)
,

where Cα,n only depends on the dimension and α.
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Proof: We have already shown that u(x) ∈ C2 and that

∂2u(x)

∂xi∂xj
=

∫
B2R(0)

∂2N(x− ξ)
∂xi∂xj

(f(ξ)− f(x)) dξ−f(x)

∫
∂B2R(0)

∂N(x− ξ)
∂xi

νj(ξ)dA(ξ).

We will use this representation to prove (14.5). We set r = |x−y| and calculate∣∣∣∣ ∂2u(x)

∂xi∂xj
− ∂2u(y)

∂xi∂xj

∣∣∣∣ ≤
≤
∣∣∣∣ ∫
B2R(0)

Nij(x− ξ) (f(ξ)− f(x)) dξ − f(x)

∫
∂B2R(0)

Ni(x− ξ)νjdA(ξ)−

−
∫
B2R(0)

Nij(y − ξ) (f(ξ)− f(y)) dξ + f(y)

∫
∂B2R(0)

Ni(y − ξ)νjdA(ξ)

∣∣∣∣ ≤
≤

∣∣∣∣∣
∫
B2r(x)

Nij(x− ξ) (f(ξ)− f(x)) dξ

∣∣∣∣∣+

∣∣∣∣∣
∫
B2r(x)

Nij(y − ξ) (f(ξ)− f(y)) dξ

∣∣∣∣∣+
+

∣∣∣∣ ∫
B2R(0)\B2r(x)

Nij(x−ξ) (f(ξ)− f(x)) dξ+

∫
B2R(0)\B2r(x)

Nij(y−ξ) (f(ξ)− f(y)) dξ+

+f(x)

∫
∂B2R(0)

Ni(x− ξ)νjdA(ξ)− f(y)

∫
∂B2R(0)

Ni(y − ξ)νjdA(ξ)

∣∣∣∣
≤

∣∣∣∣∣
∫
B2r(x)

Nij(x− ξ) (f(ξ)− f(x)) dξ

∣∣∣∣∣+

∣∣∣∣∣
∫
B2r(y)

Nij(y − ξ) (f(ξ)− f(y)) dξ

∣∣∣∣∣+
+

∣∣∣∣∣
∫
B2R(0)\B2r(x)

(Nij(x− ξ)−Nij(y − ξ)) (f(ξ)− f(x)) dξ

∣∣∣∣∣+ (14.6)

+

∣∣∣∣ ∫
B2R(0)\B2r(x)

Nij(y − ξ) (f(y)− f(x)) dξ+

−f(x)

∫
∂B2R(0)

Ni(x− ξ)νjdA(ξ) + f(y)

∫
∂B2R(0)

Ni(y − ξ)νjdA(ξ)

∣∣∣∣.
We will estimate the terms in turn. First we use that |f(ξ)−f(x)| ≤ [f ]Cα |ξ−x|α
to conclude that∣∣∣∣∣
∫
B2r(x)

Nij(x− ξ) (f(ξ)− f(x)) dξ

∣∣∣∣∣ ≤ [f ]Cα

∫
B2r(x)

|Nij(x− ξ)|| |ξ − x|αdξ ≤

≤ C[f ]Cα

∫
B2r(x)

|ξ − x|α−ndξ ≤ C[f ]Cα

α
(2r)α ≤ Cα[f ]Cαr

α

where Cα only depend on α, and n. Similarly we may estimate∣∣∣∣∣
∫
B2r(x)

Nij(y − ξ) (f(ξ)− f(y)) dξ

∣∣∣∣∣ ≤ Cα[f ]Cαr
α.
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Next we use Lemma 14.1 to estimate∣∣∣∣∣
∫
B2R(0)\B2r(x)

(Nij(x− ξ)−Nij(y − ξ)) (f(ξ)− f(x)) dξ

∣∣∣∣∣ ≤
≤ [f ]Cα

∫
B2R(0)\B2r(x)

C|x− y|
|x− ξ|n−1

|ξ − x|αdξ ≤

≤ C[f ]Cα |x− y|
∫
B2R(0)\B2r(x)

C

|x− ξ|n+1−α dξ ≤

≤ C[f ]Cαr

(
1

(2r)1−α −
1

(2R)1−α

)
≤ C[f ]Cαr

α + C[f ]Cα
r

R1−α .

To estimate the final integral in (14.6) we do an integration by parts in the
first term and use the triangle inequality as follows∣∣∣∣ ∫

B2R(0)\B2r(x)

Nij(y − ξ) (f(y)− f(x)) dξ−

−f(x)

∫
∂B2R(0)

Ni(x− ξ)νjdA(ξ) + f(y)

∫
∂B2R(0)

Ni(y − ξ)νjdA(ξ)

∣∣∣∣ =

∣∣∣∣− ∫
∂B2R(0)

Ni(y− ξ)νj (f(y)− f(x)) dξ −
∫
∂B2r(x)

Ni(y− ξ)νj (f(y)− f(x)) dξ

−f(x)

∫
∂B2R(0)

Ni(x− ξ)νjdA(ξ) + f(y)

∫
∂B2R(0)

Ni(y − ξ)νjdA(ξ)

∣∣∣∣ ≤
≤
∣∣∣∣ ∫
∂B2r(x)

Ni(y − ξ)νj (f(y)− f(x))︸ ︷︷ ︸
≤[f ]Cαrα

dξ

∣∣∣∣+
+|f(x)|

∫
∂B2R(x)

|Ni(x− ξ)−Ni(y − ξ)|︸ ︷︷ ︸
≤C|x−y|Rn on ∂B2R

dA(ξ) ≤

≤ C[f ]Cαr
α +

C|f(x)|r
R

,

notice that we get out an extra minus when we integrte by parts in the first
equality since ξ hs a minus in the argument of Nij(y − ξ).

Collecting the terms we arrive at∣∣∣∣ ∂2u(x)

∂xi∂xj
− ∂2u(y)

∂xi∂xj

∣∣∣∣ ≤ C ([f ]Cα

(
|x− y|α +

|x− y|
R1−α

)
+
|f(x)||x− y|

R

)
≤

≤ C
(

[f ]Cα |x− y|α +
|x− y| supBR(0) |f(x)|

R

)
,
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dividing both sides by |x− y|α and taking the supremum over all x, y ∈ BR(0)
gives the desired estimate.

Observe that the above Theorem only estimates the second derivatives in
BR(0) - that is away from the boundary. For further applications we will however
need the estimate close to the boundary.

Proposition 14.1. Let Ω be a domain and assume that u(x) is a solution to

∆u(x) = f(x) in Ω

assume furthermore that |u| ≤ M in Ω and that f ∈ Cαloc(Ω) and that for any
compact set K ⊂ Ω the function f(x) satisfies the following estimate

sup
x∈K
|f(x)| ≤ C0,f

dist(K, ∂Ω)2
(14.7)

and

|f(x)− f(y)| ≤ Cα,f |x− y|α

dist(K, ∂Ω)2+α
(14.8)

then there exists a constant Cn,α depending only on α and the dimension n such
that

sup
x∈K
|D2u(x)| ≤ Cn,α

C0,f + Cα,f + supΩ |u|
dist(K, ∂Ω)2

(14.9)

and

sup
x,y∈K

|D2u(x)−D2u(y)|
|x− y|α

≤ Cn,α
C0,f + Cα,f + supΩ |u|

dist(K, ∂Ω)2+α
(14.10)

Proof: We will begin by showing (14.9). The proof is not that difficult -
even though the result is very technical.

Part 1: The inequality (14.9) holds.

We fix a compact set K ⊂ Ω. Since K is compact and Ω open the distance

dist(K, ∂Ω) > 0, we define d = dist(K,∂Ω)
4 > 0. Let x0 ∈ K be an arbitrary point

then distx0, ∂Ω ≥ 4d and the following function

v(x) = u(dx+ x0)

is well defined in B4(0). The chain rule implies that

∆v(x) = d2∆u(dx+ x0) = d2f(dx+ x0) ≡ g(x) in B4(0),

where we define g(x) in the last step.
We see that v(x) and g(x) satisfies

sup
x∈B4(0)

|v(x)| = sup
x∈B4d(x0)

|u(x)| ≤ sup
x∈Ω
|u(x)|,

sup
x∈B3(0)

|g(x)| = d2 sup
x∈B3d(x0)

|f(x)| ≤ C0,f ,
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where we have used (14.7) in the last inequality as well as dist(B3d(x
0), ∂Ω) ≥ d.

Furthermore, we may estimate for x, y ∈ B3(0)

|g(x)− g(y)|
|x− y|α

= d2 |f(dx+ x0)− f(dy + x0)|
|x− y|α

=

{
substitute
x̃ = dx+ x0, ỹ = dy + x0

}
= d2+α |f(x̃)− f(ỹ)|

|x̃− ỹ|α
≤

≤ d2+αCα,f dist(B3d(x
0), ∂Ω)−(2+α)︸ ︷︷ ︸

≤d−(2+α)

≤ Cα,f ,

where we again used that dist(B3d(x
0), ∂Ω) ≥ d in the last inequality.

We have thus shown that v(x) solves the following Dirichlet problem

∆v(x) = g(x) in B2(0)
v(x) = u(dx+ x0) on ∂B2(0),

where v(x) and g(x) are is bounded by supΩ |u| and C0,f respectively and
[g]Cα(B3(0)) ≤ Cα,f .

Next we let ϕ(x) ∈ C∞c (B3(0)) be such that ϕ = 1 in B2(0) and |∇ϕ| ≤ 2.1

We also define

w(x) =

∫
Rn
N(x− y)g(y)ϕ(y)dy,

where N(x− y) is the Newtonian kernel, notice that the integral is well defined
since g(y)ϕ(y) = 0 outside of B3(0). Clearly,

sup
B2(0)

|w(x)| ≤ sup
B3(0)

|g(x)|
∫
B2(0)

N(x− y)dy ≤ Cn sup
B3(0)

|g(x)| = CnC0,f ,

where the constant only depend on the dimension. Furthermore, by the esti-
mates in Theorem 1 in the first set of notes2 we know that∣∣∣∣∂2w(0)

∂xi∂xj

∣∣∣∣ =

=

∣∣∣∣∣
∫
B3(0)

∂2N(y)

∂xi∂xj
(g(y)ϕ(y)− g(0)) dy − g(0)

∫
∂B3(x)

∂N(y)

∂xi
νj(ξ)dA(y)

∣∣∣∣∣
≤

∣∣∣∣∣
∫
B3(0)

∂2N(y)

∂xi∂xj
(g(y)ϕ(y)− g(0)) dy

∣∣∣∣∣+
1That this is possible is easy to see geometrically, or one could define ϕ(x) =∫

B5/2(0)
φ1/4(x− y)dy where φ1/4 is the standard mollifier.

2See step 3 of that proof.
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+|g(0)|

∣∣∣∣∣
∫
∂B3(x)

∂N(y)

∂xi
νj(ξ)dA(y)

∣∣∣∣∣︸ ︷︷ ︸
≤ 1 by direct
calculation

≤ (Cα,f + C0,f )

∫
B3(0)

1

|y|n−α
dy + C0,f ≤ Cn (Cα,f + C0,f )

We can conclude that

∆w(x) = g(x) in B2(0)
|D2w(0)| ≤ Cn (Cα,f + C0,f ) and
supB2(0) |w(x)| ≤ CnC0,f .

This in turn implies that h(x) = v(x)− w(x) satisfies

∆h(x) = 0 in B2(0)

sup
B2(0)

|h(x)| ≤ sup
B2(0)

|v(x)|+ sup
B2(0)

|w(x)| ≤ sup
Ω
|u(x)|+ CnC0,f .

In particular, we can conclude from our interior regularity for harmonic func-
tions that

|D2h(0)| ≤ n322n+4

ωn2n+2
‖h‖L1(B2(0)) ≤ Cn

(
sup

Ω
|u(x)|+ C0,f

)
.

We may conclude that∣∣D2v(0)
∣∣ =

∣∣D2 (v(0)− w(0) + w(0))
∣∣ =

=
∣∣D2 (h(0) + w(0))

∣∣ ≤ Cn,α(sup
Ω
|u(x)|+ C0,f + Cα,f

)
.

But
D2v(0) = d2D2u(x0)

which implies ∣∣D2u(x0)
∣∣ ≤ Cn,α (supΩ |u(x)|+ C0,f + Cα,f )

d2
=

=
16Cn,α (supΩ |u(x)|+ C0,f + Cα,f )

dist(K, ∂Ω)2
.

This proves part 1.

Part 2: The inequality (14.10) holds.

We use the same set-up as in part 1 and let K ⊂ Ω be a compact set and
x0, y0 ∈ K be arbitrary points. First we notice that if |x0 − y0| ≥ d then the
estimate immediately follows, indeed:

|D2u(x0)−D2u(y0)|
|x0 − y0|α

≤ |D
2u(x0)|+ |D2u(y0)|
|x0 − y0|α

≤
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≤ 21+2αCn,α (supΩ |u(x)|+ C0,f + Cα,f )

dist(K, ∂Ω)2|x0 − y0|α
≤ 2Cn,α (supΩ |u(x)|+ C0,f + Cα,f )

dist(K, ∂Ω)2+α
,

which is the desired estimate. Therefore we may assume, without loss of gener-
ality, that |x0 − y0| < d.

We define v(x) as in part 1 of this proof. Then, with z0 = y0−x0

d ∈ B1(0)∣∣D2v(0)−D2v(z0)
∣∣

|0− z0|α
= d2+α |D2u(x0)−D2u(y0)|

|x0 − y0|α
.

Therefore it is enough to show that∣∣D2v(0)−D2v(z0)
∣∣

|z0|α
≤ Cn,α

(
C0,f + Cα,f + sup

Ω
|u|
)
.

If we define w(x) and h(x) as in Part 1 of this proof then it follows from
Theorem 14.1, in particular from (14.1), that∣∣∣ ∂2w(0)

∂xi∂xj
− ∂2w(z0)

∂xi∂xj

∣∣∣
|z0|α

≤ Cα,n (Cα,f + C0,f ) ,

where we have used that |z0| < 1, that [g]Cα(B2(0)) ≤ Cα,f and supB2(0) |g| ≤
C0,f .

Next we estimate∣∣∣ ∂2h(0)
∂xi∂xj

− ∂2h(z0)
∂xi∂xj

∣∣∣
|z0|α

≤
supx∈B1(0) |D3h(x)||z0|

|z0|α
≤ sup
x∈B1(0)

|D3h(x)|

where we used the mean value theorem for the derivative to conclude that
∂2h(0)
∂xi∂xj

− ∂2h(z0)
∂xi∂xj

= z0 ·∇ ∂2h(ξ)
∂xi∂xj

for some ξ on the line from the origin to z0. But

since h(x) is harmonic in B2(0) it follows that

sup
B1(0)

|D3h(x)| ≤ Cn‖h‖L1(B2(0)) ≤ Cn sup
B2(0)

|h(x)| ≤ Cn
(

sup
Ω
|u(x)|+ C0,f

)
.

We can thus conclude that∣∣D2v(0)−D2v(z0)
∣∣

|z0|α
≤
∣∣D2w(0)−D2w(z0)

∣∣
|z0|α

+

+

∣∣D2h(0)−D2h(z0)
∣∣

|z0|α
≤ Cn,α

(
C0,f + Cα,f + sup

Ω
|u|
)
.

This finishes the proof.
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14.2.1 An application.

Before we consider the general case of an elliptic PDE we will consider a simpler
perturbation result with a PDE that is some sense is close to the Laplace equa-
tion. We will improve on the following result significantly later in the course.

In this section we will assume that

Lu(x) =

n∑
i,j=1

aij(x)
∂2u(x)

∂xi∂xj
in B1(0), (14.11)

where aij satisfies the ellipticity condition and the following conditions

‖aij‖Cα(B1(0)) ≤ ε for i, j = 1, 2, ..., n and i 6= j (14.12)

and
‖aii − 1‖Cα(B1(0)) ≤ ε for i = 1, 2, ..., n. (14.13)

The conditions (14.12) and (14.13) means that the partial differential operator
is close to Laplace in some sense. In particular, if ε = 0 then L = ∆.

Lemma 14.2. Let f(x) ∈ Cα(B1(0)) and g(x) ∈ C(∂B1(0)). Assume further-
more that L is as in (14.11) and that aij(x) satisfies (14.12)-(14.13). Assume
furthermore that there exists a δ > 0 such that

aij(x) = 0 if x ∈ B1(0) \B1−δ(0) and i 6= j,

and
aii(x) = 1 if x ∈ B1(0) \B1−δ(0),

that is L· = ∆· in B1(0) \B1−δ(0).
Then there exists an εδ > 0 (depending on δ > 0 as well as f , g, aij and Ω)

such that if ε < εδ then there exists a unique solution to

Lu(x) = f(x) in Ω
u(x) = g(x) on ∂Ω.

Proof: Even though we have made many preparations the proof is quite
complicated. We will prove the Lemma by constructing a convergent sequence
of approximating solutions starting with the Dirichlet problem.

Observe that we can find a solution, u0(x), to

∆u0(x) = f(x) in Ω
u0(x) = g(x) on ∂Ω.

We will inductively define uk(x), for k = 1, 2, ..., as the solution to

∆uk(x) = ∆uk−1 − Luk−1(x) + f(x) in Ω
uk(x) = g(x) on ∂Ω.

Since we are going to work with the differences u − uk−1 for most of the
proof we define wk(x) = uk(x)− uk−1(x) for k ≥ 1 and w0(x) = u0(x).



14.2. INTERIOR APROIRI ESTIMATES FOR THE LAPLACIAN. 111

Then

∆wk(x) = ∆uk−1(x)− Luk−1(x)−∆uk−2(x) + Luk−2(x) = (14.14)

= (∆− L)
(
wk−1(x)

)
.

But on each compact set K ⊂ Ω we have, by Proposition 14.1 in particular
(14.9), that

sup
x∈K
|D2wk(x)| ≤ (14.15)

≤ Cn,α
d2 supx∈K |(∆− L)wk−1|+ d2+α

[
(∆− L)(wk−1)

]
Cα(K)

+ supΩ |wk|
d2

where d = dist(K, ∂Ω) and similarly[
D2wk(x)(x))

]
Cα(K)

≤ (14.16)

≤ Cn,α
d2 supx∈K |(∆− L)wk−1|+ d2+α[(∆− L)wk−1]Cα(K) + supB1(0) |wk|

d2+α
.

But clearly, with the notation δij = 0 if i 6= j and δij = 1 if i = j,

sup
x∈K
|(∆− L)wk−1| ≤

sup
i,j=1,...,n

(
sup
x∈K
|aij(x)− δij |

)
︸ ︷︷ ︸

≤ε

sup
x∈K
|D2wk−1(x)| ≤

≤ ε sup
x∈K
|wk−1(x)|

and similarly3 [
(∆− L)(wk−1)

]
Cα(K)

≤ ε
[
D2wk−1

]
Cα(K)

.

In conclusion we get form (14.15) and (14.16) that

sup
x∈K
|D2wk(x)| ≤ (14.17)

≤ Cn,αε
(

sup
x∈K
|D2wk−1(x)|+ dα

[
D2wk−1

]
Cα(K)

)
+

supB1(0) |wk|
d2

and [
|D2wk(x)

]
Cα(K)

≤ (14.18)

≤ Cn,αε

dα

(
sup
x∈K
|D2wk−1(x)|+ dα

[
D2wk−1

]
Cα(K)

)
+

supB1(0) |wk|
d2+α

3Here we are cheating a little. To be exact, we are skipping some details. The assertion is
justified but it uses some results that we will cover later.
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We need to estimate supΩ |wk|. Notice that wk(x) = uk − uk−1 = 0 on
∂B1(0) and from (14.14) we get that∣∣∆wk∣∣ =

∣∣(∆− L)wk−1(x)
∣∣ ≤

≤ ε sup
x∈B1−δ(0)

∣∣D2wk−1(x)
∣∣ .

Therefore, by the comparison principle we can deduce that

−B(x) ≤ wk(x) ≤ B(x) (14.19)

where

B(x) =
ε supx∈B1−δ(0)

∣∣D2wk−1(x)
∣∣

2n
(1− |x|2).

In particular B(x) = wk(x) = 0 on ∂B1(0) and −∆B(x) ≥ ∆wk ≥ ∆B(x).
We may thus estimate

sup
B1(0)

|wk(x)| ≤ ε sup
x∈B1−δ(0)

∣∣D2wk−1(x)
∣∣ . (14.20)

Using (14.20) in (14.17) and (14.18) we can conclude that

sup
x∈K
|D2wk(x)|+ dα

[
D2wk(x)

]
Cα(K)

≤

≤ Cε
(

1 + d2

d2
sup
x∈K
|D2wk−1(x)|+ dα

[
D2wk−1

]
Cα(K)

)
≤ (14.21)

≤ 1

2

(
sup
x∈K
|D2wk−1(x)|+ dα

[
D2wk−1

]
Cα(K)

)
where the last inequality follows if ε is small enough, say ε ≤ cδ2

2 for some small
c, and d ≥ δ.

Equation (14.21) is the heart of the proof since it shows that

sup
x∈K
|D2wk(x)|+ dα

[
D2wk(x)

]
Cα(K)

≤

≤ 1

2

(
sup
x∈K
|D2wk−1(x)|+ dα

[
D2wk−1

]
Cα(K)

)
≤

≤ 1

22

(
sup
x∈K
|D2wk−2(x)|+ dα

[
D2wk−2

]
Cα(K)

)
≤

≤ · · · ≤ 1

2k

(
sup
x∈K
|D2w0(x)|+ dα

[
D2w0

]
Cα(K)

)
.

That is D2uk(x) forms a Cauchy sequence in Cα(K) for any K ∈ B1−δ(0).
So, by the Arzela-Ascoli Theorem, uk → u uniformly on B1−δ(0). And on
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B1(0) \B1−δ(0) it directly follows that uk converges, at least for a subsequence,
since ∆uk(x) = f(x) in B1(0) \B1−δ(0).

So uk → u in C2,α
loc (B1(0)). By the definition of uk it als follows that

∆uk = (∆− L)uk−1(x) + f(x)⇒ Luk−1 = ∆(uk−1(x)− uk(x))︸ ︷︷ ︸
→0 in Cαloc

+f(x).

It follows that
Lu(x) = f(x) in B1(0).

Using (14.19) together with

|wk(x)| ≤ B(x) ≤ C(1− |x|2)

2k

we can conclude that

|uk(x)−u0(x)| ≤
k∑
i=1

|uk−uk−1| ≤
k∑
i=1

|wk(x)| ≤ C(1−|x|2)

k∑
i=1

1

2i
≤ C(1−|x|2)

which implies that for every k = 1, 2, 3, ...

u0(x)− C(1− |x|2) ≤ uk(x) ≤ u0(x) + C(1− |x|2).

Since u0 ∈ C(Ω) we can conclude that u(x) ∈ C(Ω).
Uniqueness of u(x) follows by the maximum principle, in particular Corollary

13.2.
Remarks: There are several things to say about this Lemma.

1. First of all, the result is very unsatisfactory in several respects. The most
obvious is that we assume that aij(x) = δij in B1(0) \ B1−δ(0). But this
assumption is necessary for us to estimate (14.21).

That we need this assumption is because we our estimates of D2u(x)
breaks down when x is close to the boundary. In particular the presence of
the inverse of the distance to the boundary in the statement of Proposition
14.1.

Therefore we need to develop a theory that better estimates the solutions
close to the boundary, estimates without the dist(K, ∂Ω)−1 terms.

2. We need to develop some better terminology in order not to get lost in the
technicalities. In particular we need to develop the language of Banach
spaces as well as some functional analysis.

3. It is also rather unsatisfactory that the proof only works for small ε. The
theory only works for small ε because, and this is very important, we do
not have a regularity theory for the general equation Lu(x) = f(x). If
we had such a theory we could, using the terminology of the beginning of
this chapter, apply the same proof in Lemma 14.2 to find a solution to
Lt+εu(x) = f(x) if we could solve a solution to Ltu(x) = f(x) - and then
for Lt+2εu(x) = f(x) etc.
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In the next chapter we will continue to develop the regularity theory for
elliptic PDE. Then we will see that the interior regularity theory actually implies
boundary regularity. Once we have the regularity theory in place we will be
able to show existence for the general equation Lu(x) = f(x) - under some
assumptions on L and on the boundary of Ω.



Chapter 15

Apriori interior estimates
for constant coefficient
PDE.

In the last chapter we saw that we can estimate [D2u]Cα for the solution to
∆u(x) = f(x) in terms of f and sup |u|. And very importantly, we also saw
that such estimates leads to existence of solutions for PDE with coefficients
that are close, in Cα−norm, to that are close to the coefficients of ∆ (that
is aij(x) ≈ δij). We will use this knowledge to construct solutions to general
variable coefficients PDE.

In particular, if we consider a general linear PDE with variable coefficients:

Lu(x) =

n∑
i,j=1

aij(x)
∂2u(x)

∂xi∂xj
+

n∑
i=1

bi(x)
∂u(x)

∂xi
+ c(x)u(x) = f(x) in Ω, (15.1)

where aij(x), bi(x) and c(x) ∈ Cα. Then if we consider a small enough ball
Br(x

0) ⊂ Ω then

aij(x) ≈ aij(x0), bi(x) ≈ bi(x0) and c(x) ≈ c(x0) in Br(x
0).

This means that in the small ball Br(x
0) we will have that L· is close to a PDE

with constant coefficients:

Lu(x) ≈
n∑

i,j=1

aij(x
0)
∂2u(x)

∂xi∂xj
+

n∑
i=1

bi(x
0)
∂u(x)

∂xi
+ c(x0)u(x) ≈ f(x) in Br(x

0).

(15.2)
One usually say that a PDE like (15.2) has frozen coefficients and the method
we will use is often called freezing of the coefficients.

Thus if we understand constant coefficient PDE better then we should be
able to better understand a variable coefficient equation. The method is quite

115
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subtle, and it is not at all clear at this point that freezing of the coefficients
will yield any useful results. However, in this chapter we will prove a simple
regularity result for constant coefficient equations. In the next chapter we will
show that we can actually freeze the coefficients to get a good regularity theory
for variable coefficient equations.

Before reading the rest of this chapter it is advisable to read the appendixes
on Banach spaces and interpolation inequalities.

Proposition 15.1. Assume that Ω is a bounded domain and that u(x) ∈ C2(Ω)
solves the following constant coefficient PDE

n∑
ij=1

aij
∂2u(x)

∂xi∂xj
= f(x) in Ω

where aij are constants satisfying the following ellipticity condition

λ|ξ|2 ≤
n∑

i,j=1

aijξiξj ≤ Λ|ξ|2 (15.3)

for some constants Λ, λ > 0 and all ξ ∈ Rn.
Then, for any 0 < α < 1 there exists a constant C = C(λ,Λ, n, α) such that

‖u‖C2,α
int (Ω) ≤ C

(
‖u‖C(Ω) + ‖f‖Cα

int,(2)
(Ω)

)
.

Proof: The proof is very simple. We will show that a change of variables
transforms u(x) into a harmonic function v(x) and the estimates for u(x) follows
from the corresponding estimates for harmonic functions. We will do the proof
in several steps - some of them we will only sketch.

Step 1: We may change variables to transform u(x) into a harmonic func-
tion.

Since the matrix A = [aij ] is symmetric we may write it as

A = OTDO,

where O is an orthogonal matrix (with rows consisting of the eigenvectors of
A) and D is the diagonal matrix with the eigenvalues of A along the diagonal.
Using that A is elliptic, (15.3), we know that the eigenvalues of A are bounded
from above and below by Λ and λ > 0 and we may thus take the square root of
D. Now define P =

√
DO, then it follows that A = PTP . Expressed in terms

of components:

ajk =

n∑
i=1

pijpik.

So if we define

v(x) = u(Px)
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then
n∑
i=1

∂2v(x)

∂x2
i

=

n∑
i=1

∂

∂xi

 n∑
j=1

pij
∂u(Px)

∂xj

 =

=

n∑
i,j,k=1

pijpik
∂2u(Px)

∂xj∂xk
=

n∑
j,k=1

(
n∑
i=1

pijPik

)
︸ ︷︷ ︸

=ajk

∂2u(Px)

∂xj∂xk
=

=

n∑
j,k=1

ajk
∂2u(Px)

∂xj∂xk
= f(Px).

Thus it follows that ∆v(x) = f(Px).
It follows from Proposition 1 (Part 5 of these notes, also reformulated in

Proposition 17.1 in the appendix) that

‖v‖C2,α
int (Ω) ≤ C

(
‖u‖C(Ω) + ‖f(P ·)‖(2)

Cα
int,(2)

(Ω)

)
. (15.4)

Step 2: Bound of |∇u(x)| on compact sets.

Since P is an orthogonal matrix times a diagonal matrix with diagonal ele-
ments in [

√
λ,
√

Λ] it follows that P is invertible. We may therefore write

u(x) = v(P−1x).

In particular,
∇u(x) = P−1 · ∇v(P−1x),

But since all eigenvalues of P−1 lay in the interval [Λ−1/2, λ−1/2] it follows that

|∇u(x)| ≤ 1√
λ
|∇v(P−1/2x)|. (15.5)

Now for any compact set K ⊂ Ω we have that

P (K) = {Px; x ∈ K} ⊂ P (Ω) = {Px; x ∈ Ω},

and if
dist(K, ∂Ω) = d then dist(P (K), ∂P (Ω)) ≥

√
λd. (15.6)

In particular for any x ∈ K ⊂ Ω it follows (15.4), (15.5) and (15.6) that

|∇u(x)| ≤ C

λ

(
‖u‖C(Ω) + ‖f(P ·)‖(2)

Cα
int,(2)

(Ω)

)
dist(K, ∂Ω)

. (15.7)

Step 3: Estimates for D2u(x) and [D2u]Cα(K).

This works exactly the same as in step 1. That is we may write D2u and
[D2u]Cα in terms of v and use (15.4).
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Chapter 16

Apriori interior estimates
for PDE with variable
coefficients.

We are now ready to prove interior apriori estimates1 for equations with variable
coefficients. We will prove the following estimate

‖u‖C2,α
int (Ω) ≤ C

(
‖f‖Cα

int,(2)
+ ‖u‖C(Ω)

)
where C = C(n, α,Ω, λ,Λ) and on the coefficients in the equation:

n∑
i,j=1

aij(x)
∂2u(x)

∂xi∂xj
+

n∑
i=1

bi(x)
∂u(x)

∂xi
+ c(x)u(x) = f(x) (16.1)

We have already seen all the ideas that we are going to use. Our method
of proof will be to freeze the coefficients. In particular, if the coefficients of the
equation are close to constant, say that |aij(x) − aij(x0)| ≤ ε for some small
ε > 0 in a ball Br(x

0) then we may write equation (16.1) as

n∑
i,j=1

aij(x
0)
∂2u(x)

∂xi∂xj
= f(x)−

n∑
i,j=1

(
aij(x)− aij(x0)

)︸ ︷︷ ︸
≤ε

∂2u(x)

∂xi∂xj
− (16.2)

−
n∑
i=1

bi(x)
∂u(x)

∂xi
− c(x)u(x) in Br(x

0)

1An apriori estimate is an estimate for an equation that is made before we know that
solutions exist. Typically one assumes that there exist a solution in some Banach space, say
C2,α

int (Ω), and then proves that there is a bound on the norm of that space that does not
depend on the solution.
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We can view this as a constant coefficient equation (with right hand side de-
pending on u) and apply Proposition 15.1 and derive that

‖u‖C2,α
int (Br(x0)) ≤ C

(
‖u‖C(Br(x0)) + ‖F‖Cα

int,(2)
(Br(x0))

)
,

where F (x) is the right hand side in (16.2). Now ‖F‖Cα
int,(2)

(Br(x0)) will depend

on u. But since we multiply the second derivatives of the u−term by something
of order ε in (16.2) the dependence will not be significant if ε is small enough.

Therefore we can estimate the C2,α
int (Br(x

0)) (or even the norm in Ω) if
aij(x) ≈ aij(x

0). But, and here is the second main idea2, if the coefficients are
continuous then |aij(x) − aij(x0)| ≤ ε in Br(x

0) for any x0 if r > 0 is small
enough. And since we can cover any compact set K ⊂ Ω by finitely many balls
Br(x) it is enough to do prove the regularity in a small ball.

We are now ready to state and prove the Theorem.

Theorem 16.1. Let u ∈ C2,α
int (Ω), where Ω is a bounded domain and α ∈ (0, 1),

be a solution to

Lu(x) =

n∑
i,j=1

aij(x)
∂2u(x)

∂xi∂xj
+

n∑
i=1

bi(x)
∂u(x)

∂xi
+ c(x)u(x) = f(x) in Ω.

Assume furthermore that aij(x), f(x) ∈ Cα(Ω) and that aij(x) satisfy the
ellipticity condition λ|ξ|2 ≤

∑
ij aij(x)ξiξj ≤ Λ|ξ|2. Then there exists a constant

C = C(n, α,Ω, λ,Λ, aij) such that

‖u‖C2,α
int (Ω) ≤ C

(
‖f‖Cα

int,(2)
(Ω) + ‖u‖C(Ω)

)
.

Proof: Let K ⊂ Ω be a compact set. We need to show that

2∑
j=0

(
dist (K, ∂Ω)

j
sup
x∈K
|Dju(x)|

)
+dist (K, ∂Ω)

2+α
sup
x,y∈K

|Dku(x)−Dku(y)|
|x− y|α

≤

≤ C
(
‖f‖Cα

int,(2)
(Ω) + ‖u‖C(Ω)

)
.

But by the interpolation inequality (Proposition 18.1 in the appendix.) it is
enough to show that

dist (K, ∂Ω)
2+α

sup
x,y∈K

|Dku(x)−Dku(y)|
|x− y|α

≤ C
(
‖f‖Cα

int,(2)
+ ‖u‖C(Ω)

)
. (16.3)

We will prove the Theorem in three steps. First we will cover K by balls
BδK (xk) in a very specific way, then we will prove (16.3) for an ball Bδ(x

k). In
the final step we will show that it is enough to prove the Theorem for the balls
BδK (xk) in order to prove the Theorem.

Step 1: Let K ⊂ Ω be a compact set and ε > 0 be a fixed constant (to be
determined later) depending only on the coefficients of L. Then we may cover
K by a balls BδK (xk). Where the balls BδK (xk) may be chosen to satisfy

2Freezing of the coefficients was the first
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1. B4δK (xk) ⊂ Ω,

2. |aij(x)− aij(xk)| < ε in BδK (xk),

3. δK ≥ dist(K,∂Ω)
4 if dist(K, ∂Ω) is small enough.

Since ‖aij‖Cα(Ω) < ∞ there is a µε > 0 such that for any x ∈ Ω we have
|aij(x)− aij(y)| < ε for every y ∈ Bµε(x). Now let us denote

dK =
dist(K, ∂Ω)

4

and δ = min(dK , µε). Then obviously K ⊂ ∪x∈KBδ(x). Since K is compact we
can find a finite sub-cover Bδ(x

k) as described in step 1.

Step 2: The following estimate holds

δ2
K‖D2u‖Cαint(B2δK

(xk)) ≤ CL
(
‖u‖C(Ω) + ‖f‖Cα

int,(2)
(Ω)

)
,

where CL depend on the coefficients aij , bi and c through their Cα(Ω)−norm
and the ellipticity constants λ, Λ and also on the dimension n.

Here we use the freezing of the coefficients argument and write, in the ball
B2δK (xk)

n∑
i,j=1

aij(x
0)
∂2u(x)

∂xi∂xj
= f(x)−

n∑
i,j=1

(
aij(x)− aij(x0)

) ∂2u(x)

∂xi∂xj
−

−
n∑
i=1

bi(x)
∂u(x)

∂xi
− c(x)u(x) = F (x),

where F (x) is defined by the last inequality.
Viewing this a s a constant coefficient PDE we may use Proposition 15.1 to

deduce that

δ2
K‖D2u‖Cαint(B2δK

(xk)) ≤ C
(
‖u‖C(Ω) + ‖F‖Cα

int,(2)
(B2δK

)

)
≤

≤ C

‖u‖C(Ω) + ‖f‖Cα
int,(2)

(Ω) +

∥∥∥∥∥∥
n∑

i,j=1

(
aij(x)− aij(x0)

) ∂2u(x)

∂xi∂xj

∥∥∥∥∥∥
Cα

int,(2)
(Ω)

+

+C

∥∥∥∥∥
n∑
i=1

bi(x)
∂u(x)

∂xi

∥∥∥∥∥
Cα

int,(2)
(B2δK

)

+ ‖c(x)u(x)‖Cα
int,(2)

(B2δK
)

 ≤
≤ C

(
‖u‖C(Ω) + ‖f‖Cα

int,(2)
(Ω)

)
+
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+

n∑
i,j=1

∥∥aij(x)− aij(x0)
∥∥
C(B2δK

)︸ ︷︷ ︸
<ε

∥∥∥∥ ∂2u(x)

∂xi∂xj

∥∥∥∥
Cint,(2)(B2δK

)

+ (16.4)

+

n∑
i,j=1

∥∥aij(x)− aij(x0)
∥∥
C(B2δK

)︸ ︷︷ ︸
<ε

[
∂2u(x)

∂xi∂xj

]
Cα

int,(2)
(B2δK

)

+

+

n∑
i,j=1

[
aij(x)− aij(x0)

]
Cα(B2δK

)

∥∥∥∥ ∂2u(x)

∂xi∂xj

∥∥∥∥
Cint,(2)(B2δK

)

+

+C

 n∑
i=1

‖bi(x)‖Cα(Ω)

∥∥∥∥∥
n∑
i=1

∂u(x)

∂xi

∥∥∥∥∥
Cα

int,(2)
(B2δK

)

+ ‖c‖C(Ω) ‖u(x)‖Cα
int,(2)

(B2δK
)

 ≤
< C

(
‖u‖C(Ω) + ‖f‖Cα

int,(2)
(Ω)

)
+

+C

 n∑
i=1

‖bi(x)‖C(Ω)

∥∥∥∥∥
n∑
i=1

∂u(x)

∂xi

∥∥∥∥∥
Cα

int,(2)
(B2δK

)

+ ‖c‖C(Ω) ‖u(x)‖Cα
int,(2)

(B2δK
)

+

+CLδ
2
K

∥∥D2u
∥∥
Cint(B2δK

)
+ Cεδ2

K

[
D2u

]
Cint(B2δK

)︸ ︷︷ ︸
≤
δ2
K
4 [D2u]Cint(B2δK

)

,

where the constant CL depend on the coefficients aij , bi and c through their
Cα(Ω)−norm and the ellipticity constants λ, Λ and also on the dimension n. We
have also used that [·]Cα

int,(2)
(B2δK

) ≤ Cδ2
K [·]Cαint(B2δK

) and the final “underbrace”

holds if ε is small enough.
Using Propoisition 18.1 in the appendix we can deduce that

CLδ
2
K

∥∥D2u
∥∥
Cint(B2δK

)
≤

≤ CLCεδ2
K‖D2u‖Cint(B2δK

) + εCLδ
2
K

[
D2u

]
Cαint(B2δK

)
≤ (16.5)

≤ CLCεδ2
K‖D2u‖Cint(B2δK

) +
δ2
K

4

[
D2u

]
Cαint(B2δK

)
,

where the last inequality holds if ε is small enough.
We may also use the the interpolation inequality to estimate the lower order

terms:

C

 n∑
i=1

‖bi(x)‖Cα(Ω)

∥∥∥∥∥
n∑
i=1

∂u(x)

∂xi

∥∥∥∥∥
Cα

int,(2)
(B2δK

)

+ ‖c‖C(Ω) ‖u(x)‖Cα
int,(2)

(B2δK
)

 ≤
(16.6)

≤ CLCεδ2
K‖D2u‖Cint(B2δK

) +
δ2
K

4

[
D2u

]
Cαint(B2δK

)
.
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Using (16.5) and (16.6) in (16.4) we can deduce that, for a somewhat larger
CL,

δ2
K‖D2u‖Cαint(B2δK

(xk)) ≤

≤ CL
(
‖u‖C(Ω) + ‖f‖Cα

int,(2)
(Ω)

)
+ (16.7)

+
3δ2
K

4
‖D2u‖Cαint(B2δK

(xk)).

Rearranging terms in (16.7) implies the statement in step 2.

Step 3: Proof of the Theorem.

Since the balls BδK (xk) cover K it follows directly from step 2 and that

δK ≥ dist(K,∂Ω)
4 that

sup
K
|D2u(x)| ≤ Caij

‖u‖C(Ω) + ‖f‖Cα
int,(2)

(Ω)

dist(K, ∂Ω)2
.

Moreover, for any two x, y ∈ K such that |x − y| > dist(K,∂Ω)
8 it follows that

x, y ∈ Bδk(xk) for some ball and thus∣∣D2u(x)−D2u(y)
∣∣

|x− y|α
≤ 2

|x− y|α
sup
K
|D2u(x)| ≤ C

‖u‖C(Ω) + ‖f‖Cα
int,(2)

(Ω)

dist(K, ∂Ω)2+α
.

So we only need to estimate
|D2u(x)−D2u(y)|

|x−y|α for |x − y| ≤ dist(K,∂Ω)
8 ≤

mink(δK)
2 . But if |x − y| ≤ mink(δK)

2 then there exists a ball BδK (xk) such that
x, y ∈ BδK (xk) so we may use step 2 again and conclude that∣∣D2u(x)−D2u(y)

∣∣
|x− y|α

≤ C
‖u‖C(Ω) + ‖f‖Cα

int,(2)
(Ω)

dist(K, ∂Ω)2+α
.

Thus it follows that

dist(K, ∂Ω)2‖D2u‖Cαint(Ω) ≤ C
‖u‖C(Ω) + ‖f‖Cα

int,(2)
(Ω)

dist(K, ∂Ω)2+α
,

where C = C(n, α,Ω, λ,Λ, aij). The Theorem follows by the interpolation in-
equality Proposition 18.1.
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Chapter 17

Barnach Spaces.

We will need some notation from functional analysis in order to simplify the
exposition somewhat. The point of this appendix is not to cover functional
analysis, which is a very large area of mathematics. But just to remind ourselves
of some basic notions. We start with the following definition.

Definition 17.1. We say that a set A is a linear space over R if

1. A is a commutative group. That is there is an operation “+′′ defined on
A×A 7→ A such that

(a) For any u, v, w ∈ A the following holds: u + v = v + u (addition is
commutative), (u+ v) + w = u+ (v + w) (addition is associative).

(b) There exists an element 0 ∈ A such that for all u ∈ A we have
u+ 0 = u.

(c) For every u ∈ A there exists an element v ∈ A such that u + v = 0,
we usually denote v = −u.

2. There is an operation (multiplication) defined on R×A 7→ A such that

(a) For all a, b ∈ R and u, v ∈ A we have a · (u + v) = a · u + a · v and
(a+ b) · u = a · u+ b · u.

(b) For all a, b ∈ R and u ∈ A we have (ab) · u = a · (b · u).

Examples: 1: The most obvious example is if A = Rn and “+′′ is normal
vector addition and “·′′ is normal multiplication by a real number.

2: Another example that will be much more important to us is if A is a
set of functions, say the set of functions with two continuous derivatives on Ω.
Clearly all the above assumptions are satisfied for twice continuously differen-
tiable functions if we interpret “+′′ and “·′′ as the normal operations.

Many linear spaces satisfies another important structure: that we can mea-
sure distances. Distances allow us to talk about convergence and to do analysis.
We will only be interested in spaces where we have a norm.
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Definition 17.2. A norm ‖ · ‖ on a linear space A is a function from A 7→ R
such that the following axioms are satisfied:

1. For any u ∈ A we have ‖u‖ ≥ 0 with equality if and only if u = 0 (The
Positivity Axiom).

2. For any u, v ∈ A we have ‖u+ v‖ ≤ ‖u‖+ ‖v‖ (The Triangle Inequality).

3. For any u ∈ A and a ∈ A we have ‖a · u‖ = |a|‖u‖ (The Homogeneity
Axiom).

If a linear space A has a norm we say that A is a normed linear space, or just
a normed space.

Examples: 1: The linear space Rn is a normed space with norm ‖(u1, ..., un)‖ =
(u2

1 + u2
2 + ...+ u2

n)1/2.
2: The set of continuous functions on [0, 1] is a normed space under the

norm

‖u‖ =

∫ 1

0

|u(x)|dx.

3: If we define

‖u‖C2(Ω) = sup
x∈Ω
|u(x)|+ sup

x∈Ω
|∇u(x)|+ sup

x∈Ω
|D2u(x)|, (17.1)

Then the set of two times continuously differentiable functions u(x) on Ω for
which ‖u‖C2(Ω) is finite forms a normed space: C2(Ω). Notice that 1

x /∈ C2(0, 1)

even though 1
x is continuous with continuous derivatives on (0, 1).

The final property that we need in our function-spaces is completeness.

Definition 17.3. Let A be a normed linear space. Then we say that A is
complete if every Cauchy sequence uj ∈ A converges in A.

Remember that we say that uj ∈ A is a Cauchy sequence if there for every
ε > 0 exists a Nε such that ‖uj − uk‖ < ε for all j, k > Nε. So if A is complete
and uj is a Cauchy sequence in A then there should exist an element u0 ∈ A
such that limj→∞ ‖uj − u0‖ = 0.

Examples: 1: It is an easy consequence of the the Bolzano-Weierstrass
theorem that Rn is complete. In particular, every Cauchy sequence is bounded.
Therefore the Bolzano-Weierstrass theorem implies that it has a convergent sub-
sequence. That the Cauchy condition implies that the entire sequence converges
to the same limit is easy to see.

2: The space of continuous functions on [0, 1] with norm ‖u‖ =
∫ 1

0
|u(x)|dx

is not complete. For instance if

uj(x) =


0 if 0 ≤ x ≤ 1

2 −
1
j

j
2

(
x−

(
1
2 −

1
j

))
if 1

2 −
1
j < x < 1

2 + 1
j

1 if 1
2 + 1

j ≤ x ≤ 1
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then uj is continuous and forms a Cauchy sequence. However the limit is clearly

u0(x) =

 0 if 0 ≤ x < 1
2

1
2 if x = 1

2
1 if 1

2 < x ≤ 1.

But u0 is not continuous and therefore not in the space of continuous functions
on [0, 1]. Therefore that space is not complete.

However, if we consider the space C([0, 1]) of continuous functions with norm

‖u‖C([0,1]) = sup
x∈[0,1]

|u(x)|

then we get a complete space. This since the limit limj→∞ uj(x) is uniform and
continuity is preserved under uniform limits.

It is important to notice that the properties of the space is dependent on the
norm. Continuous functions with an integral are not complete, but continuous
spaces with a supremum norm are complete.

3: The space C2(Ω) with norm defined by the supremum as in (17.1) is also
a complete space.

Clearly, in order to do analysis on a linear space it is desirable that the linear
space is complete. We therefore make the following definition.

Definition 17.4. We call a complete linear space is a Banach space.

17.1 Banach spaces and PDE.

Banach spaces helps us to formulate questions in PDE in a new way.
The initial way to view a PDE is to view it point-wise. That is, for the

Laplace equation for instance, we think of a solution as twice differentiable

function u(x) that should satisfy
∑n
i=1

∂2u(x)
∂x2
i

= f(x) at every point x ∈ Ω.

There is nothing wrong with this viewpoint, and as a matter of fact everything
we do in Banach spaces will depend on results we derived by using this point of
view. However, as the equations becomes more complicated it is reasonable to
look for a simplified conceptualization of what a PDE is. By formulating a PDE
as a problem in Banach spaces we are able to leave the point-wise viewpoint
behind and consider the PDe as a mapping between Banach spaces.

Let us consider a function u ∈ C2(Ω) and we let

Lu(x) =

n∑
i,j=1

aij(x)
∂2u(x)

∂xi∂xj
+

n∑
i=1

bi(x)
∂u(x)

∂xi
+ c(x)u(x)

be an elliptic partial differential operator with continuous coefficients.1 Then
for any u ∈ C2(Ω) we clearly have that Lu(x) ∈ C(Ω).

1We already know that it is more natural to consider PDE with Hölder continuous coeffi-
cients. But it is enough to have continuous coefficients for us to introduce the next idea.
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We can thus view the partial differential operator L as a map between Banach
spaces: L : C2(Ω) 7→ C(Ω). That is, for every u ∈ C2(Ω) there exists an
f ∈ C(Ω) such that Lu(x) = f(x). Similarly, L maps the subset

C2
g (Ω) = {u ∈ C2(Ω); u(x) = g(x) on ∂Ω} ⊂ C2(Ω)

into C(Ω).
Solving the PDE

Lu(x) = f(x) in Ω
u(x) = g(x) on ∂Ω

for a given f ∈ C(Ω) and g ∈ C(∂Ω) is therefore the same as finding an inverse
L−1 of the mapping L : C2

g (Ω) 7→ C(Ω). If such a mapping exists then the
solution is given by u(x) = L−1f(x).

There are several reasons to change the re-conceptualize of a problem in
mathematics. One reason is that changing the point of view might clarify a dif-
ficult concept, simplify statements or show that several problems have a similar
underlying structure2. The most important reason to change the point of view
on a subject is however that one might be able to use different techniques and
prove new results in the new conceptualization.

In this section we will only reformulate some of our results in this new
language and fix some notation. In later chapters we will prove some fixed point
theorems3 in Banach spaces that will help us to prove existence of solutions to
PDE with variable coefficients.

Example: In Theorem 1 in Chapter 2 (in the first part of these lecture
notes) we proved that if f ∈ Cαc (Rn) then

u(x) =

∫
Rn
N(x− ξ)f(ξ)dξ, (17.2)

where N(x) is the Newtonian kernel, solves ∆u(x) = f(x). Using the Liouville
Theorem it is easy to see that the function u(x) is the only solution to ∆u(x) =
f(x) that tends to zero as x→∞.

If we consider ∆ as an operator

∆ : C2
0 (Rn) = {u ∈ C2(Rn); lim

x→∞
u(x) = 0} 7→ C(Rn).

Then Theorem 1 actually shows that the inverse of the Laplacian, ∆−1, is well
defined on Cαc (Rn) ⊂ C(Rn) and given by (17.2).

Example: We know that ∆ is does not have a well defined inverse from
Cc(Rn) to C2(Rn) since there are functions u /∈ C2(Rn) with ∆u ∈ Cc(Rn), see
exercise 3 in the first part of these notes.

2For instance, viewing a PDE as a mapping between linear spaces highlights a similarity
between PDE and linear algebra that might not be so easy to see otherwise.

3Specifically, the contraction mapping principle that we will use to develop a technique
called the method of continuity.
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Based on the above two examples it is a reasonable question to ask between
what spaces does ∆ have an inverse? Or more generally, when does a variable
coefficient PDE L· have an inverse. In the next section we will introduce some
Banach spaces that we know are of importance in inverting PDE.

17.2 Some Banach spaces that are important for
PDE.

We already know that the Hölder spaces Ck,α(Ω) are important in PDE theory.

Definition 17.5. Given a domain Ω and u a k-times continuously differentiable
function on Ω we will use the notation, for k ∈ N and α ∈ [0, 1],

‖u‖Ck,α(Ω) =

k∑
j=1

sup
x∈Ω
|Dju(x)|+ sup

x,y∈Ω

|Dku(x)−Dku(y)|
|x− y|α

.

Furthermore, we let Ck,α(Ω) denote the set of all two times differentiable
functions for which ‖u‖Ck,α(Ω) <∞.

When α = 0 we will disregard α and the last term in the definition of
‖u‖Ck,α(Ω) and write

‖u‖Ck,α(Ω) = ‖u‖Ck(Ω) =

k∑
j=1

sup
x∈Ω
|Dju(x)|,

and when k = 0 and α ∈ (0, 1) we will write ‖u‖C0,α(Ω) = ‖u‖Cα(Ω).

It is easy to that the space Ck,α(Ω) is a Banach space.

Lemma 17.1. The space Ck,α(Ω) is a Banach space with the norm ‖u‖Ck,α(Ω).

Proof: It is trivial to verify that Ck,α(Ω) is a linear space and that ‖u‖Ck,α(Ω)
is a norm. That Ck,α(Ω) is complete follows by the Arzela-Ascoli Theorem.

It is quite often that we only need information about the Hölder continuity,
we will therefore define the semi-norm4

[u]Cα(Ω) = sup
x,y∈Ω

|u(x)− u(y)|
|x− y|α

.

We have also seen that the Ck,α(Ω) space is not always suitable for expressing
our theorems. We will therefore use introduce the alternative norms ‖u‖Ck,αint (Ω)

and ‖u‖Ck,α
int,(l)

(Ω) that we use in our interior estimates.

4A semi-norm is satisfies all the requirements for a norm except that ‖u‖ = 0⇔ u = 0.
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Definition 17.6. For any k−times continuously differentiable function u(x)
defined on a domain Ω we denote by ‖u‖Ck,αint (Ω) the least constant Γ such that

k∑
j=0

(
dist (K, ∂Ω)

j
sup
x∈K
|Dju(x)|

)
+dist (K, ∂Ω)

k+α
sup
x,y∈K

|Dku(x)−Dku(y)|
|x− y|α

≤ Γ

for all compact sets K ⊂ Ω.
More generally, we will define ‖u‖Ck,α

int,(l)
(Ω) to be the least constant Γ such

that

k∑
j=0

(
dist (K, ∂Ω)

j+l
sup
x∈K
|Dju(x)|

)
+dist (K, ∂Ω)

k+l+α
sup
x,y∈K

|Dku(x)−Dku(y)|
|x− y|α

≤ Γ

for all compact sets K ⊂ Ω.
Furthermore we will denote by Ck,αint (Ω) and Ck,αint,(l)(Ω) the Banach spaces of

k−times continuously differentiable functions for which the norms ‖u‖Ck,αint (Ω)

and ‖u‖Ck,α
int,(l)

(Ω) are bounded.

It is easy to see that Ck,αint (Ω) and Ck,αint,(l)(Ω) are Banach spaces with their
respective norms.

The norms of the spaces Ck,αint (Ω) and Ck,αint,(l)(Ω) controls the functions in

the interior of Ω. In particular if u ∈ Ck,αint,(l)(Ω) then u ∈ Ck,α(K) for any

compact set K ⊂ Ω. However, the norm ‖u‖Ck,α(K) will depend on the distance

dist(K, ∂Ω) and in general functions in Ck,αloc,(l)(Ω) will have infinite Ck,α(Ω)

norm. Some examples might clarify the situation.

Examples: 1. Consider u(x) = sin
(
ln
(

1
x

))
defined on (0, 1/2). Clearly

u(x) is bounded and continuous so u(x) ∈ C(0, 1/2). However, u /∈ C1(0, 1/2)
since Du(x) = − 1

x cos
(
ln
(

1
x

))
which isn’t bounded. But u(x) ∈ C1

int(0, 1/2)
since for any compact set K = [κ, 1/2− κ] ⊂ (0, 1/2) we have

sup
x∈K
|u(x)|+ κ sup

x∈K
|Du(x)| ≤ 1 + κ sup

x∈[κ,1/2−κ]

∣∣∣∣ 1x cos

(
ln

(
1

x

))∣∣∣∣ ≤ 2.

Thus ‖u‖C1
int(0,1/2) = 2.

2: Let u(x) = 1
1−x2 be defined on (−1, 1). Then u(x) is unbounded so

u /∈ Ck,α(−1, 1) for any k or α.
However, u ∈ C1,α

int,(1)(−1, 1) since for any compact set K = [−1 + κ, 1 − κ]

we have

‖u‖C1,α
int,(1)

= κ sup
x∈K
|u(x)|+ κ2 sup

x∈K
|Du(x)|+ κ2+α sup

x,y∈K

|Du(x)−Du(y)|
|x− y|α

<∞

where the upper bound is independent of κ ∈ (0, 1).
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Observe that the norm on Ck,αint,(l)(−1, 1) allows the function and its derivative

to tend to infinity at the boundary of Ω. The parameter l determines how fast
the function and its derivatives may go to infinity. For instance the above
function u ∈ Ck,αint,(l)(−1, 1) for any l ≥ 1 but not for any l < 1.

It is important to realize that these norms, even though they appear to be
artificial, they are natural. For instance we may formulate the interior regularity
result for harmonic functions as:

Proposition 17.1. Let Ω be a domain and assume that u(x) is a solution to

∆u(x) = f(x) in Ω

assume furthermore that |u| ≤M in Ω and that f ∈ Cαint,(2)(Ω) then there exists
a constant Cn,α such that

‖u‖C2,α
int (Ω) ≤ Cn,α

(
‖f‖Cα

int,(2)
(Ω) + ‖u‖C(Ω)

)
. (17.3)

The proof of Proposition 17.1 is a direct consequence of Proposition 1 in
the 5th part of these lecture notes together with an interpolation inequality
that we will prove in the next appendix. Notice that the norms ‖u‖C2,α

int (Ω) and

‖f‖Cα
int,(2)

(Ω) appears in the statement - and that these norms makes the state-

ment of the Proposition much more compact than the formulation of Proposition
1 in the fifth part of these notes. The norms are natural in the sense that (17.3)
is optimal and we can not prove a stronger statement without adding further
assumptions on the boundary data of u and on the geometry of Ω.

Remark on scaling: One heuristic way to see that (17.3) is natural is to
consider the “scaling” of the estimate. Since ∆u(x) involves two derivatives
it is natural that if ∆u = f then u should have two more derivatives than
f . This explains that we have a (2, α) norm on the right hand side in (17.3)
whereas the left hand side is only a Hölder α−norm. Since we are not making
any assumptions on the boundary data of u in Proposition 17.1 we can not
expect the derivatives of u to be bounded - in particular if the boundary data
is discontinuous at x0 ∈ ∂Ω then u can not have any continuous extension to
Ω. So the best estimate we can hope for is an estimate that allows |∇u(x)| and
|D2u(x)| to tend to infinity as x→ ∂Ω. This explains why we have the “int” in
the C2,α

int (Ω)−norm in (17.3).

The difference between the C2,α(Ω) and the C2,α
int (Ω)−norm is that the latter

norm allows

|∇u(x)| ≈ dist(x, ∂Ω)−1, (17.4)

|D2u(x)| ≈ dist(x, ∂Ω)−2 (17.5)

and

sup
x,y∈K

|D2u(x)−D2u(y)|
|x− y|α

≈ dist({x, y}, ∂Ω)−2−α (17.6)
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whereas the C2,α(Ω)-norm requires uniform bounds in the entire domain Ω. To
see that the exponents −1, −2 and −2−α in (17.4), (17.5) and (17.6) are natural
we rescale the equation. We use the estimate (17.4) as an illustration. Assume
that dist(x0, ∂Ω) = 2r then the function v(x) = u(rx+ x0) will solve

∆v(x) = r2f(rx+ x0) in B2(0),

since

n∑
i=1

∂2v(x)

∂x2
i

=

n∑
i=1

(
r2 ∂

2u(rx+ x0)

∂x2
i

)
= r2∆u(rx+ x0) = r2f(rx+ x0). (17.7)

Since supB2(0) |v| ≤ supΩ |u| we can conclude that |∇v(0)| is bounded indepen-

dently of r. But |∇v(0)| = r|∇u(x0)| and if r|∇u(x0)| is bounded independently
of r ≈ dist(x0, ∂Ω) then |∇u(x)| ≈ dist(x, ∂Ω)−1 which is what what (17.4)
states. If you consider the proof of Proposition 1 (in part 5 of the lecture notes)
again you will see that that is exactly how we prove the estimates.

Finally, we need to say something about the l = 2 in the ‖f‖Cα
int,(2)

(Ω)−norm

of (17.3). But we see directly from the scaling in (17.7) that l = 2 is the optimal
l since if |f(x0)| ≈ dist(x0, ∂Ω)−2 (that is the growth of f allowed by the norm
‖f‖Cα

int,(l)
(Ω) with l = 2) then the right hand side in (17.7) is bounded since

r ≈ dist(x0, ∂Ω).

Further properties of the Hölder spaces: In addition to being a Banach
space the Hölder spaces Ck,α(Ω), Ck,αint (Ω) and Ck,αint,(l)(Ω) also have a multiplica-

tion defined5: if φ(x), ϕ(x) ∈ Ck,α(Ω) then φ(x) ·ϕ(x) ∈ Ck,α(Ω) (and similarly

for Ck,αint (Ω) and Ck,αint,(l)(Ω)).

We will only prove this for k = 0, the general case is an easy consequence of
this and the product rule for the derivative.

Proposition 17.2. Assume that φ(x), ϕ(x) ∈ Cα(Ω) then φ(x)·ϕ(x) ∈ Ck,α(Ω)
and

[φ · ϕ]Cα(Ω) ≤
(
‖φ‖C(Ω)[ϕ]Cα(Ω) + ‖ϕ‖C(Ω)[φ]Cα(Ω)

)
. (17.8)

Proof: The proof uses the same trick as the proof of the multiplication rule
for differentiation. In particular, we may estimate

|φ(x)ϕ(x)− φ(y)ϕ(y)| = |(φ(x)ϕ(x)− φ(x)ϕ(y))− (φ(y)ϕ(y)− φ(x)ϕ(y))| ≤

≤ |φ(x)| |ϕ(x)− ϕ(y)|+ |ϕ(y)| |φ(y)− φ(x)| ≤ (17.9)

≤ ‖φ(x)‖C(Ω) |ϕ(x)− ϕ(y)|+ ‖ϕ(y)‖C(Ω) |φ(y)− φ(x)| ,

where the last inequality follows since ‖φ(x)‖C(Ω) = supx∈Ω |φ(x)| by definition.

5The technical term is that Ck,α(Ω), Ck,αint (Ω) and Ck,α
int,(l)

(Ω) are algebras over R.
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If we divide both sides in (17.9) by |x− y|α it follows that

|φ(x)ϕ(x)− φ(y)ϕ(y)|
|x− y|α

≤ ‖φ(x)‖C(Ω)

|ϕ(x)− ϕ(y)|
|x− y|α

+‖ϕ(y)‖C(Ω)

|φ(y)− φ(x)|
|x− y|α

≤

≤
(
‖φ‖C(Ω)[ϕ]Cα(Ω) + ‖ϕ‖C(Ω)[φ]Cα(Ω)

)
,

by the definition of [ϕ]Cα(Ω) and [φ]Cα(Ω). Taking the supremum over x, y ∈ Ω
yields the result.
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Chapter 18

Interpolation inequalities

An interpolation inequality is exactly what it sounds like. Given two inequalities
we might derive a third inequality that somehow lies between the other two. In
this chapter we will show that if the second derivatives and the function value
(zeroth order derivatives) of u is bounded, then the first derivatives are bounded
as well. We will only prove the two simple interpolation inequalities that we
need

Proposition 18.1. [Interpolation inequality] Suppose that u ∈ C(Ω)
then:

1. If D2u ∈ Cint,(2)(Ω) then, for any ε > 0, there exists a Cε such that the
following inequality holds

‖∇u‖Cint,(1)
≤ Cε‖u‖C(Ω) + ε‖D2u‖Cint,(2)

. (18.1)

2. If [D2u]Cα
int,(2)

(Ω) is bounded then, for any ε > 0, there exists a Cε such

that the following inequality holds

‖D2u‖Cint,(2)
≤ Cε‖u‖C(Ω) + ε[D2u]Cα

int,(2)
(Ω). (18.2)

3. The same is true without the “int′′ and (l) in the norms.

Remark on the proposition. The proposition might seem to be very
abstract (in particular if one is unused to the rather intricate definitions of
the norms). But what it states is that it is enough to control ‖u‖C(Ω) and
‖D2u‖Cint,(2)

in order to control the norm

‖u‖C2
int(Ω) = ‖u‖C(Ω) + ‖∇u‖Cint,(1)

+ ‖u‖C(Ω) + ‖D2u‖Cint,(2)
.

Similarly, ‖u‖C(Ω) and [D2u]Cα
int,(2)

(Ω) controls the norm ‖u‖C2,α
int (Ω).

Proof: We will only prove the first two points since the third point is anal-
ogous.

135
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To show (18.1) we let x0 ∈ Ω. We need to show that

dist(x0, ∂Ω)|∇u(x0)| ≤ Cε‖u‖C(Ω) + ε‖D2u‖Cint,(2)
. (18.3)

If we can show (18.3) then (18.1) follows by taking the supremum over all x0 ∈ Ω.
If we let 4d = dist(x0, ∂Ω) then

sup
Bd(x0)

|D2u(x)| ≤ C

d2
‖D2u‖Cint,(2)

and from Taylors Theorem we can conclude that, for any 0 ≤ t ≤ d,

inf
Bt(x0)

|ξ · ∇u(x)| ≥ |∇u(x0)| − Ct

d2
‖D2u‖Cint,(2)

, (18.4)

where ξ = ∇u(x0)
|∇u(x0)| .

Now for any y1, y2 ∈ Bd(x0) such that y2 = y1 +sξ there exists, by the mean
value theorem a z ∈ Bd(x0) on the line between y1 and y2 such that

2 sup
Bd(x0)

|u(x)| ≥ |u(y1)− u(y2)| = |(y2 − y1) · ∇u(z)|︸ ︷︷ ︸
=|sξ·∇u(z)|

≥ (18.5)

≥ s|∇u(x0)| − Cs2

d2
‖D2u‖Cint,(2)

,

where we used (18.4) with s = t in the last inequality.

Rearranging (18.5) and then multiply both sides by dist(x0,∂Ω)
s we see that

2dist(x0, ∂Ω)

s
‖u‖C(Ω)+

Csdist(x0, ∂Ω)

d2
‖D2u‖Cint,(2)

≥ dist(x0, ∂Ω)|∇u(x0)||∇u(x0)|.

But 4d = dist(x0, ∂Ω) and s > 0 is arbitrary so we can choose s = cεd for an
appropriate c > 0 and conclude that

C

ε
‖u‖C(Ω) + ε‖D2u‖Cint,(2)

≥ dist(x0, ∂Ω)|∇u(x0)|.

This is exactly what we want to prove with Cε = C/ε, (18.1) follows.

Next we prove (18.2).The proof is very similar to the proof of (18.1). How-
ever, we will need to use a second order Taylor expansion instead of a first order
expansion. As before we fix an x0 ∈ Ω and set 4d = dist(x0, ∂Ω).

We aim to show that for x0 ∈ Ω

dist(x0, ∂Ω)2|D2u(x0)| ≤ Cε‖u‖C(Ω) + ε[D2u]Cα
int,(2)

(Ω). (18.6)

Notice that it is enough to show that for all unit vectors η

dist(x0, ∂Ω)2|D2
ηu(x0)| ≤ Cε‖u‖C(Ω) + ε[D2u]Cα

int,(2)
(Ω),



137

where Dη = η · ∇ is the directional derivative in the η direction. There is no
loss of generality to assume that η = e1, otherwise we may change basis for our
coordinate system so that η = e1.

Using a Taylor expansion we see that, for y0 = x0 + se1 and |s| ≤ d,∣∣∣∣u(y0)−
(
u(x0) +

∂u(x0)

∂x1
(y0

1 − x0
1) +

1

2

∂2u(x0)

∂x2
1

(y0
1 − x0

1)2

)∣∣∣∣ =

=

∣∣∣∣u(y0)−
(
u(x0) +

∂u(x0)

∂x1
s+

1

2

∂2u(x0)

∂x2
1

s2

)∣∣∣∣ ≤ (18.7)

≤ C |s|
2+α

d2
[D2u]Cα

int,(2)
(Ω).

Let us, for the sake of definiteness assume that ∂2u(x0)
∂x2

1
≤ 0 then we may

choose s such that s∂u(x0)
∂x1

≤ 0 and conclude from (18.7) that

u(y0)− u(x0)− 1

2

∂2u(x0)

∂x2
1

s2 ≤ C |s|
2+α

d2
[D2u]Cα

int,(2)
(Ω),

which implies that∣∣∣∣∂2u(x0)

∂x2
1

∣∣∣∣ ≤ 4

s2
‖u‖C(Ω) + C

|s|α

d2
[D2u]Cα

int,(2)
(Ω),

which gives (18.6) if we choose |s| small enough and that 4d = dist(x0, ∂Ω).
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Chapter 19

An interlude
- the Need for Boundary
Estimates.

So far we have proved interior estimates, that is estimates for ‖u‖C2,α
int

if u solves

an elliptic PDE. Unfortunately the interior estimates are not strong enough to
prove existence of solutions since they allow the second derivatives to grow line
dist(x, ∂Ω)−2.

In order to explain this let us review our strategy for finding solutions to the
equation∑n

i,j=1 aij(x) ∂
2u(x)

∂xi∂xj
+
∑n
i=1 bi(x)∂u(x)

∂xi
+ c(c)u(x) = f(x) in Ω

u(x) = g(x) on ∂Ω,
(19.1)

let us for notational simplicity assume that bi = c = 0. We write the equation

n∑
i,j=1

aij(x
0)
∂2u(x)

∂xi∂xj
=

n∑
i,j=1

(
aij(x

0)− aij(x)
) ∂2u(x)

∂xi∂xj
+ f(x)︸ ︷︷ ︸

=F (x)

, (19.2)

where we assume that |aij(x0) − aij(x)| < ε. Notice that if u ∈ C2,α
int (Ω) then

the right hand side in (19.2) may grow like |F (x)| ≈ ε
dist(x,∂Ω)2 as we approach

the bundary ∂Ω.
In order to show that the boundary values are obtained in (19.1) we would

need to construct a barrier w(x) at each boundary point x0 ∈ Ω. A barrier
was a super-solution to the equation that satisfied w(x0) = 0 and w(x0) > 0 in
Ω \ {x0}. But a super-solution would have to satisfy

n∑
i,j=1

aij(x
0)
∂2w(x)

∂xi∂xj
≤ F (x).
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And if F (x) ≈ − ε
dist(x,∂Ω)2 then it is easy to see that we can not find a barrier in

general. The easiest way to see this is to consider the one dimensional problem
Ω = (0, 1) and F (x) = − ε

dist(x,∂Ω)2 and a11(x0) = 1. Then the equation for the

barrier reduces to
d2w(x)
dx2 ≤ − ε

x2 in (0, 1)
w(0) = 0 and
w(x) > 0 in (0, 1).

But integrating this differential equation leads to w(x) = ε ln(x) + ax + b for
some constants a, b ∈ R which clearly can not take the value w(0) = 0.

The problem is that the interior estimates allow the solution to grow to fast
at the boundary (that is why they are called interior). Therefore we need to
prove some estimates at the boundary of the domain. It is easy to see that we
can not prove that the solution to (19.1) has bounded C2,α norm without any
assumptions on the boundary and on the domain.

Example: Let Ω = B+
1 (0) = {x ∈ B1(0) x2 > 0} be a domain in R2 and

u(x) be a solution to
∆u(x) = 0 in Ω
u(x) = |x1|α on ∂Ω,

for some α ∈ (0, 1). Such a solution exists by the Perron method. However,
if ‖u‖C2,α(Ω) ≤ C then we would have that ‖u(x1, 0)‖C2,α(x1∈(−1,1)) ≤ C. But
u(x1, 0) = |x1|α /∈ C2,α which would lead to a contradiction. We may conclude
that u /∈ C2,α(Ω). As a matter of fact, this shows that the best we can hope for
is that u ∈ Cα(Ω). This shows that we must assume that the boundary data is
in C2,α to have any hope to show that ‖u‖C2,α(Ω) is bounded.

Example: Remember that the function u(r, φ) = rα sin (αφ) solves the
Dirichlet problem

∆u(r, φ) = 0 in {r ∈ (0,∞), φ ∈ (0, π/α)
u(r, φ) = 0 for φ = 0 and φ = π

α ,

for α ≥ 1
2 . Notice that if α ∈ [1/2, 1) then u ∈ Cα \ C1. So we have harmonic

functions with zero boundary data that are still not C2,α. The problem here
is that the domain has a sharp corner at the origin. Apparently we need to
assume something about the regularity of the domain in order to prove that the
solutions are C2,α(Ω).

In the following chapters we will pursue estimates for the C2,α−norm for
solutions to (19.1). The proofs will be quite similar to the proofs of the inte-
rior estimates. In particular, we will start to show boundary estimates for the
Newtonian potential close to a part of the boundary where the boundary is as-
sumed to be contained in a hyperplane. Then we will continue to investigate the
Dirichlet problem for the laplace equation close to a boundary, again given by a
hyperplane. Having those estimates at hand it is easy to show apriori estimates
for solutions to the Dirichlet problem for variable coefficient PDE.



Chapter 20

Boundary regularity
- The Laplace equation.

In this chapter we will investigate the boundary regularity properties for the
Laplace equations close to a part of the boundary that is a hyperplane. The
proof will be analogous to the interior regularity proof.

We begin by estimating the Newtonian potential in an upper half ballB+
2R(0).

The proof consists of one major observation - that the boundary terms on the
flat part of the boundary disappears in the estimate for the second derivatives

for all second derivatives except ∂2u(x)
∂x2
n

. But it is easy to estimate ∂2u(x)
∂x2
n

in

terms of ∂2u(x)
∂x2
i

, for i = 1, 2, ..., n − 1 and f(x). This since ∆u(x) = f(x) and

thus ∂2u(x)
∂x2
n

= f(x)−
∑n−1
i=1

∂2u(x)
∂x2
i

.

Lemma 20.1. Let f(x) ∈ Cα(B+
2R(0)) for some 0 < α < 1 and define

u(x) =

∫
B+

2R(0)

N(x− ξ)f(ξ)dξ

then there exists a constant Cn,α depending only on n and α such that the
following inequality holds

[D2u]Cα(B+
R(0)) ≤ Cn,α

(
[f ]Cα(B+

2R(0)) +
supBR(0) |f(x)|

Rα

)
. (20.1)

Proof: We have already shown, see Theorem 2.1, that ∂2u(x)
∂xi∂xj

has the follow-

ing representation formula for x ∈ B+
2R(0)

∂2u(x)

∂xi∂xj
=

∫
B+

2R(0)

∂2N(x− ξ)
∂xi∂xj

(f(ξ)− f(x)) dξ− (20.2)

−f(x)

∫
∂B+

2R(0)

∂N(x− ξ)
∂xi

νj(ξ)dA(ξ).
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Strictly we only proved this representation for the domain B2R(0) but the de-
duction for the upper half ball B+

2R(0) is exactly the same.
We will split the proof into two cases. The first case is very similar to the

proof of Theorem 14.1 and we will only indicate the minor differences.

Case 1: Estimates for
[

∂2u
∂xi∂xj

]
Cα(B+

R(0))
when i 6= n or j 6= n.

We may assume that j 6= n, if not then i 6= n and we may use that ∂2u(x)
∂xi∂xj

=

∂2u(x)
∂xj∂xi

to reduce to the case for j 6= n.

Observe that the normal ν = −en on ∂B+
2R(0)∩{xn = 0} and the boundary

integral in (20.2) therefore reduces to

f(x)

∫
∂B+

2R(0)

∂N(x− ξ)
∂xi

νj(ξ)dA(ξ) =

= f(x)

∫
∂B2R(0)∩{xn>0}

∂N(x− ξ)
∂xi

νj(ξ)dA(ξ).

Therefore, for j 6= n, the representation in (20.2) becomes

∂2u(x)

∂xi∂xj
=

∫
B+

2R(0)

∂2N(x− ξ)
∂xi∂xj

(f(ξ)− f(x)) dξ− (20.3)

−f(x)

∫
∂B2R(0)∩{xn>0}

∂N(x− ξ)
∂xi

νj(ξ)dA(ξ).

Notice that we do not integrate over the set {xn = 0} in (20.3). We may
therefore form the difference∣∣∣∣ ∂2u(x)

∂xi∂xj
− ∂2u(x)

∂xi∂xj

∣∣∣∣ =

=

∣∣∣∣ ∫
B+

2R(0)

Nij(x−ξ) (f(ξ)− f(x)) dξ−f(x)

∫
∂B2R(0)∩{xn>0}

Ni(x−ξ)νjdA(ξ)−

−
∫
B+

2R(0)

Nij(y − ξ) (f(ξ)− f(y)) dξ + f(y)

∫
∂B2R(0)∩{xn>0}

Ni(y − ξ)νjdA(ξ)

∣∣∣∣.
These are the integrals we estimated in the proof of Theorem 14.1 with the only
difference that we now integrate over a smaller set B2R(0) ∩ {xn > 0} in place
of B2R(0). But the estimates of Theorem 14.1 still works line for line in this
case.

We may therefore conclude that, for j 6= n,[
∂2u

∂xi∂xj

]
Cα(B+

R(0))

≤ Cn,α
(

[f ]Cα(B2R(0)) +
supBR(0) |f(x)|

Rα

)
. (20.4)
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Case 2: Estimates for
[
∂2u
∂x2
n

]
Cα(B+

R(0))
.

Since ∆u(x) = f(x) it follows that

∂2u(x)

∂x2
n

= f(x)−
n−1∑
j=1

∂2u(x)

∂x2
j

.

In particular

[
∂2u

∂x2
n

]
Cα(B+

R(0))

=

f(x)−
n−1∑
j=1

∂2u(x)

∂x2
j


Cα(B+

R(0))

≤

≤ [f(x)]Cα(B+
R(0)) +

n−1∑
j=1

[
∂2u(x)

∂x2
j

]
Cα(B+

R(0))

≤

≤ [f(x)]Cα(B+
R(0)) + (n− 1)Cn,α

(
[f ]Cα(B2R(0)) +

supBR(0) |f(x)|
Rα

)
,

where we used the triangle inequality in the first inequality and (20.4) in the
last inequality.

If we redefine Cn,α to 1 + (n− 1)Cn,α we may conclude that[
∂2u

∂x2
n

]
Cα(B+

R(0))

≤ Cn,α
(

[f ]Cα(B2R(0)) +
supBR(0) |f(x)|

Rα

)
.

Corollary 20.1. Let u be as in Lemma 20.1 then

‖u‖C2,α(B+
R(0)) ≤ Cn,α

(
[f ]Cα(B+

2R(0)) +

(
1

Rα
+R2

)
‖f(x)‖C(B+

2R(0))

)
.

Proof: By the interpolation inequality it is enough to show that

‖u‖C(B+
2R(0)) ≤ CnR

2‖f(x)‖C(B+
2R(0)).

By the definition of u we have

|u(x)| =

∣∣∣∣∣
∫
B+

2R(0)

N(x− ξ)f(ξ)dξ

∣∣∣∣∣ ≤
≤ ‖f‖C(B+

2R(0))

∣∣∣∣∣
∫
B+

2R(0)

N(ξ)dξ

∣∣∣∣∣ ≤ CnR2‖f(x)‖C(B+
2R(0)),

where we used the explicit formula for N in the last inequality.
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Next we estimate the solution to the Dirichlet problem up to the boundary
in B+

4R with zero boundary data on xn = 0. The proof uses that we may reflect
the potential solution from Lemma 20.1 in the hyperplane {xn = 0}, just as
we reflected the Newtonian kernel in order to find a Greens function in Rn+.
This allows us to reduce the regularity problem to the case when f(x) = 0. An
odd reflection in xn = 0 to the solutions with f(0) = 0 reduces the boundary
regularity case to an interior problem.

Proposition 20.1. Assume that u ∈ C2(B+
4R) and that u solves

∆u(x) = f(x) in B+
4R(0)

u(x) = 0 on B4R(0) ∩ {xn = 0},

where f ∈ Cα(B+
4R(0)) for some α ∈ (0, 1).

Then there exists a constant Cn,α depending only on n and α such that

[u]C2,α(B+
R(0)) ≤ (20.5)

≤ Cn,α
(

[f ]Cα(B0
4R(0)) +

(
1

Rα
+R2

)
‖f‖C(B+

4R(0)) +
1

R2+α
‖u‖C(B+

2R(0))

)
.

Proof: We will write u(x) = v(x) + h(x) in the ball B+
2R(0) where

∆v(x) = f(x) in B+
2R(0)

v(x) = 0 on B2R(0) ∩ {xn = 0}

and
∆h(x) = h(x) in B+

2R(0)
h(x) = 0 on B2R(0) ∩ {xn = 0}
h(x) = u(x)− v(x) on ∂B2R(0) ∩ {xn > 0}.

(20.6)

We need to estimate the C2,α(B+
R(0))−norms of v(x) and h(x) in turn.

Step 1: Construction of and estimates for v(x).

We may define the reflection of f(x) in Cα(B4R(0)) according to

f̂(x) =

{
f(x) if xn ≥ 0
f(x1, x2, .., xn−1,−xn) if xn < 0.

Then f̂ ∈ Cα(B4R(0)) and ‖f̂‖Cα(B4R(0)) = ‖f‖Cα(B+
4R(0)).

Now define

v̂(x) =

∫
B4R(0)

N(x− ξ)f̂(ξ)dξ for x ∈ B4R(0)

and

v̌(x) =

∫
B+

4R(0)

N(x− ξ)f(ξ)dξ for x ∈ B+
4R(0).
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From Theorem 14.1 we derive that

[D2v̂]Cα(B2R(0) ≤ Cα,n
(

[f ]Cα(B4R(0)) +
supB4R(0) |f(x)|

Rα

)
,

and similarly from Lemma 20.1 we derive that

[D2v̌]Cα(B+
2R(0)) ≤ Cn,α

(
[f ]Cα(B+

4R(0)) +
supB2R(0) |f(x)|

Rα

)
.

In particular we may conclude that v(x) = 2v̌(x) − v̂(x) satisfies the same
estimate (possibly with a larger constant)

[D2v]Cα(B+
2R(0)) ≤ Cn,α

(
[f ]Cα(B+

4R(0)) +
supB2R(0) |f(x)|

Rα

)
.

We claim that v(x1, x2, ..., xn−1, 0) = 0. This follows easily from the sym-
metry of the Newtonian kernel:

N(x1−ξ1, ..., xn−1−ξn−1, xn−ξn) = N(x1−ξ1, x2−ξ2, ..., xn−1−ξn−1,−xn+ξn),

since N(x− ξ) only depends on |x− ξ|.
Therefore, if xn = 0,

v̂(x) =

∫
B4R(0)

N(x− ξ)f̂(ξ)dξ =

=

∫
B4R+ (0)

N(x− ξ)f̂(ξ)dξ +

∫
B4R− (0)

N(x− ξ)f̂(ξ)dξ =

= 2

∫
B4R+ (0)

N(x− ξ)f̂(ξ)dξ = 2v̌(x).

So if xn = 0 then v(x) = 2v̌(x)− v̂(x) = 0 as claimed.

Step 2: Construction of and estimates for h(x).

The function h(x) = u(x)− v(x) so we only need to estimate its C2,α norm.
We will do that by considering the odd reflection of h(x) - which we will show

is harmonic in B2R(0) - together with interior estimates for harmonic functions.
In particular that we may estimate the C3(BR(0))−norm of a harmonic func-
tions by its C(B2R)−norm.

We need to estimate ‖h‖C(B+
2R(0)) which, by the maximum principle, is the

same as estimating

sup
∂B+

2R(0)

|h(x)| = sup
∂B+

2R(0)

|u(x)− v(x)| ≤ sup
∂B+

2R(0)

|u(x)|+ sup
∂B+

2R(0)

|v(x)|.

The supremum of u appears in the right hand side of (20.5) so we only need to
estimate sup∂B+

2R(0) |v(x)|. This is easily done as in the proof of Corollary 20.1.

In particular,

|v(x)| ≤ 2

∣∣∣∣∣
∫
B+

4R(0)

N(x− ξ)f(ξ)dξ

∣∣∣∣∣+

∣∣∣∣∣
∫
B4R(0)

N(x− ξ)f̂(ξ)dξ

∣∣∣∣∣ ≤
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≤ 3‖f‖C(B+
4R(0))

∫
B4R

|N(ξ)| dξ ≤ Cn‖f‖C(B+
4R(0))R

2.

Therefore

‖h‖C(B+
2R(0) ≤ ‖u‖CB+

2R
(0)

+ Cn‖f‖C(B+
4R(0))R

2.

Consider the odd reflection of h on ∂B2R(0):

ĥ(x) =

{
h(x) if xn ≥ 0 and x ∈ ∂B2R(0)
−h(x) if xn < 0 and x ∈ ∂B2R(0).

Furthermore we let g solve the Dirichlet problem

∆g(x) = 0 in B2R(0)

g(x) = ĥ(x) on ∂B2R(0).
(20.7)

Then, since g(x) is uniquely determined by (20.7) and since ĥ(x) is odd in xn,
it follows that g(x) is an odd function in xn. That is g(x1, x2, ..., 0) = 0 and
therefore g(x) solves (20.6). Uniqueness for the Dirichlet problem implies that
h(x) = g(x) in B+

2R(0).
Now, since g(x) is harmonic in B2R(0) it follows that there exists a constant

Cn such that

‖D3h‖C(B+
R(0)) = ‖D3g(x)‖C(B+

R(0)) ≤ ‖D
3g(x)‖C(BR(0)) ≤

≤ Cn
R3
‖g‖C(B2R) =

Cn
R3
‖h‖C(B2R).

An application of the mean-value Theorem from calculus implies that

[D2h]Cα(B+
R(0)) ≤ R

1−α‖D3h‖C(B+
R(0)) ≤

Cn
R2+α

‖h‖C(B2R) ≤

≤ Cn
((

1

Rα
+R2

)
‖f‖C(B+

4R(0)) +
1

R2+α
‖u‖C(B+

2R(0))

)
.

In particular, we have shown that

[D2u]Cα(B+
R(0)) ≤ Cn,α

(
[h]Cα(B0

R(0)) + [h]Cα(B0
R(0))

)
≤

≤ Cn,α
(

[f ]Cα(B0
R(0)) +

(
1

Rα
+R2

)
‖f‖C(B+

4R(0)) +
1

R2+α
‖u‖C(B+

2R(0))

)
.

Corollary 20.2. Under the assumptions of Proposition 20.1 we have the esti-
mate

‖u‖C2,α(B+
R(0)) ≤ (20.8)

≤ Cn,α
(

[f ]Cα(B0
R(0)) +

(
1

Rα
+R2

)
‖f‖C(B+

4R(0)) +
1

R2+α
‖u‖C(B+

2R(0))

)
.
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Proof: We only need to estimate ‖∇u‖C(B+
R(0)) and ‖D2u‖C(B+

R(0)). How-

ever, that can be done by an interpolation inequality.
We end this chapter with a proposition for constant coefficient PDE. The

proof is, as it was for the interior case, based on a change of variables that
reduces the PDE to the Laplacian.

Proposition 20.2. Let u(x) be a solution to the constant coefficient elliptic
PDE ∑n

i,j=1 aij
∂2u(x)
∂xi∂xj

= f(x) in B+
2R(0)

u(x) = 0 on ∂Ω ∩ {xn = 0},
(20.9)

where aij = aji satisfies the ellipticity condition for all ξinRn and some λ,Λ > 0

λ|ξ|2 ≤
n∑

i,j=1

aijξiξj ≤ Λ|ξ|2.

Then there exists a constant Cλ,Λ,n,α > 0 such that

‖u‖C2,α(B+
R(0)) ≤ (20.10)

≤ Cλ,Λ,n,α
(

[f ]Cα(B0
R(0)) +

(
1

Rα
+R2

)
‖f‖C(B+

4R(0)) +
1

R2+α
‖u‖C(B+

2R(0))

)
.

Proof: As in the proof of the interior estimates for constant coefficient PDEs
we make the change of variables v(x) = u(Px) where P is chosen such that
PTAP = I. Notice that the linear transformation P will map {xn = 0} unto
a hyperplane that we may assume (possibly after a rotation of the coordinates)
to be {xn = 0}. We may thus apply Corollary 20.2 on v(x) and then use
u(x) = v(P−1x) to derive the desired estimates for u. For further details see
the proof of Proposition 15.1 (Part 6 of these notes).
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Chapter 21

Boundary Regularity
- Variable Coefficient
Equations.

In this chapter we prove apriori estimates up to the boundary for general linear
variable coefficient PDE for C2,α domains. We start by showing estimates for
variable coefficient equations in upper half balls B2R(0) and then we show that
general domains with C2,α boundaries can be reduced to this case.

21.1 Boundary Regularity when the Boundary
is a Hyperplane.

In this section we use a freezing of the coefficients argument, as in Theorem
16.1, to show that variable coefficient equations have C2,α estimates up to the
flat part of the boundary in an upper half ball.

Theorem 21.1. Let u ∈ C2,α(B+
2R(0)) be a solution, in B0

2R(0), to

Lu(x) =

n∑
i,j=1

aij(x)
∂2u(x)

∂xi∂xj
+

n∑
i=1

bi(x)
∂u(x)

∂xi
+ c(c)u(x) = f(x) (21.1)

u(x) = 0 on {xn = 0} ∩B2R(0) (21.2)

Assume furthermore that aij(x), bi(x), c(x) ∈ Cα(B+
2R)(0), that aij(x) = aji(x),

and that aij(x) satisfy the following ellipticity condition

λ|ξ|2 ≤
n∑

i,j=1

aij(x)ξiξj ≤ Λ|ξ|2,

149
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for some constants 0 < λ ≤ Λ and every x ∈ B+
2R(0) and all ξ ∈ Rn.

Then there exists a constant C = C(λ,Λ, n, aij , bi, c) such that

‖u‖C2,α(B+
R(0)) ≤

≤ C
(

[f ]Cα(B0
R(0)) +

(
1

Rα
+R2

)
‖f‖C(B+

4R(0)) +
1

R2+α
‖u‖C(B+

2R(0))

)
.

Proof: This proof mimics the proof of Theorem 16.1 (Theorem 1 in part 6).

Therefore we will only indicate the minor differences. We may choose B+
3R/2(0)

as the compact set K and cover K by a finite number of balls Bδ(x
k) such

that either B4δ(x
k) ⊂ B+

3R/2(0) or B4δ(x
k) ∩ B+

3R/2(0) = B+
4δ(x

k). To estimate

‖D2u‖Cα
int,(2)

(xk) in the first case we may proceed exactly as in Theorem 16.1.

In case B4δ(x
k) ∩ B+

3R/2(0) = B+
4δ(x

k) we may apply the boundary estimates

from the previous section in place of Proposition 15.1 (Prop 1 in part 6).

Corollary 21.1. Let u ∈ C2,α(B+
2R(0)) be a solution, in B0

2R(0), to

Lu(x) =

n∑
i,j=1

aij(x)
∂2u(x)

∂xi∂xj
+

n∑
i=1

bi(x)
∂u(x)

∂xi
+ c(c)u(x) = f(x) (21.3)

u(x) = g(x′) on {xn = 0} ∩B2R(0) (21.4)

Assume furthermore that f(x), aij(x), bi(x), c(x) ∈ Cα(B+
2R)(0), that g ∈ C2,α(B′2R(0)),

that aij(x) = aji(x), and that aij(x) satisfy the following ellipticity condition

λ|ξ|2 ≤
n∑

i,j=1

aij(x)ξiξj ≤ Λ|ξ|2,

for some constants 0 < λ ≤ Λ and every x ∈ B+
2R(0) and all ξ ∈ Rn.

Then there exists a constant C = C(λ,Λ, n, aij , bi, c) such that

‖u‖C2,α(B+
R(0)) ≤

≤ C
(
‖g‖C2,α(B′2R(0)) + [f ]Cα(B+

R(0)) +

(
1

Rα
+R2

)
‖f‖C(B+

4R(0)) +
1

R2+α
‖u‖C(B+

2R(0))

)
.

Proof: We may define v(x) = u(x)− g(x′). Then Lv(x) = Lu(x)−Lg(x′) =

f(x)− Lg(x′). We may thus define f̂ = f(x)− Lg(x′) ∈ Cα(B+
2R(0)). Clearly

‖f̂‖Cα(B+
2R(0)) ≤ C

(
‖g‖C2,α(B′2R(0)) + ‖f‖Cα(B+

2R(0))

)
and

‖u‖C2,α(B+
R(0)) ≤ ‖v‖C2,α(B+

R(0)) + ‖g‖C2,α(B+
R(0)). (21.5)

We may apply the previous proposition on v with f̂ in place of f and then
estimate ‖u‖C2,α(B+

R(0)) by (21.5).
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21.2 Boundary regularity for C2,α boundaries.

Now we change our perspective to domains with boundaries that are locally
given by the graph of a C2,α-function - which we will call C2,α-domains. The
proofs are not that difficult since we may make a change of variables and trans-
form the C2,α−domains to domains with the boundary given by a hyperplane
and then use the estimates from the previous chapter.

We will use the notation x′ = (x1, x2, ..., xn−1) and ∇′ = (∂1, ∂2, ..., ∂n−1)
etc. We will also always assume that the PDE we study satisfy the standard
ellipticity condition:

λ|ξ|2 ≤
n∑

i,j=1

aij(x)ξiξj ≤ Λ|ξ|2,

for some constants Λ, λ > 0.
The next Lemma makes the important reduction of the C2α−domain to a

domain that locally has the boundary contained in a hyperplane {xn = 0} which
allows us to use the theory from the previous chapter. The method is commonly
refereed to as a “straightening of the boundary argument”.

Lemma 21.1. Let g(x′) ∈ C2,α(B′2R(0)), g(0) = |∇′g(0)| = 0 and

Ω = B2R(0) ∩ {xn > g(x′)}.

Assume furthermore that u(x) is a solution in Ω to

Lu(x) =

n∑
i,j=1

aij(x)
∂2u(x)

∂xi∂xj
+

n∑
i=1

bi(x)
∂u(x)

∂xi
+ c(x)u(x) = f(x) (21.6)

u(x) = 0 on {xn = g(x′)} ∩B2R(0) (21.7)

where L satisfies the assumptions of Theorem 21.1.
Then there exists a constant c(λ,Λ) > 0 such that if |∇g(x′)| ≤ c(λ,Λ) then

v(x) = u(x1, x2, ..., xn−1, xn − g(x′)) satisfies an elliptic equation in {(x′, xn −
g(x′)) ∈ Ω}

L̃v(x) =

n∑
i,j=1

ãij(x)
∂2v(x)

∂xi∂xj
+

n∑
i=1

b̃i(x)
∂v(x)

∂xi
+ c̃(x)v(x) = f(x′, xn − g(x′))

(21.8)

v(x) = 0 on {xn = 0},
(21.9)

where ãij , b̃i, c̃ ∈ Cα with Cα−norms only depending on the corresponding
norms for aij , bi and c and the C2,α−norm of g. Furthermore, ãij satisfies the
following ellipticity condition

λ

2
|ξ|2 ≤

n∑
i,j=1

ãij(x)ξiξj ≤ 2Λ|ξ|2, (21.10)
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for all ξ ∈ Rn.

Proof: The proof is straight forward. We may write u(x) = v(x′, xn + g(x′))
and calculate

∂u(x)

∂xi
=
∂v(x′, xn + g(x′))

∂xi
+
∂g(x′)

∂xi

∂v(x′, xn + g(x′))

∂xn
for i 6= n,

and
∂u(x)

∂xn
=
∂v(x′, xn + g(x′))

∂xn
.

Similarly we can express the second derivatives of u in terms of v(x′, xn+g(x′))
as follows, for i, j 6= n,

∂2u(x)

∂xi∂xj
=
∂2v(x′, xn + g(x′))

∂xi∂xj
+
∂2g(x′)

∂xi∂xj

∂v(x′, xn + g(x′))

∂xn
+

+
∂g(x′)

∂xi

∂g(x′)

∂xj

∂2v(x′, xn + g(x′))

∂x2
n

+
∂g(x′)

∂xi

∂2v(x′, xn + g(x′))

∂xj∂xn
,

∂2u(x)

∂xi∂xn
=
∂2v(x′, xn + g(x′))

∂xi∂xn
+
∂g(x′)

∂xi

∂2v(x′, xn + g(x′))

∂x2
n

for i 6= n,

and
∂2u(x)

∂x2
n

=
∂2v(x′, xn + g(x′))

∂x2
n

.

In particular we have that

n∑
i,j=1

aij(x)︸ ︷︷ ︸
=ãij(x′,xn−g(x′))

∂2u(x)

∂xi∂xj
=

n−1∑
i,j=1

aij(x)
∂2v(x′, xn + g(x′))

∂xi∂xj
+

+
n−1∑
i=1

ain(x) +

n−1∑
j=1

∂g(x′)

∂xj
aij


︸ ︷︷ ︸

=ãin(x′,xn−g(x′))

∂2v(x′, xn + g(x′))

∂xi∂xn

+

ann(x) + 2

n−1∑
i=1

∂g(x′)

∂xi
ain(x) +

n−1∑
i,j=1

aij(x)
∂2g(x′)

∂xi∂xj


︸ ︷︷ ︸

=ãnn(x′,xn−g(x′))

∂2v(x′, xn + g(x′))

∂x2
n

+

+

n−1∑
i,j=1

∂2g(x′)

∂xi∂xj
aij(x)

∂v(x′, xn + g(x′))

∂xn
,

where the underbraces indicate how we define ãij .
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We can also calculate

n∑
i=1

bi(x)
∂u(x)

∂xi
=

n−1∑
i=1

bi(x)
∂v(x′, xn + g(x′))

∂xi
+

+

(
bn(x) +

n−1∑
i=1

bi(x)
∂g(x′)

∂xi

)
∂v(x′, xn + g(x′))

∂xn
.

Setting b̃x′,xn+g(x′) = bi(x),

b̃n(x′, xn + g(x′)) = bn(x) +

n−1∑
i=1

bi(x)
∂g(x′)

∂xi
+
∂2g(x′)

∂xi∂xj
aij(x

′, xn + g(x′)),

and c̃(x′, xn − g(x′))) we see that

f(x) =

n∑
i,j=1

aij(x)
∂2u(x)

∂xi∂xj
+

n∑
i=1

bi(x)
∂u(x)

∂xi
+ c(x)u(x) =

=

n∑
i,j=1

ãij(x
′, xn + g(x′))

∂2v(x′, xn + g(x′))

∂xi∂xj
+

+

n∑
i=1

b̃i(x
′, xn + g(x′))

∂v(x′, xn + g(x′))

∂xi
+ c̃(x′, xn + g(x′))v(x′, xn + g(x′)).

Evaluating this at the point (x′, xn − g(x′)) gives

L̃v =

n∑
i,j=1

ãij(x)
∂2v(x)

∂xi∂xj
+

n∑
i=1

b̃i(x)
∂v(x)

∂xi
+ c̃(x)v(x) = f(x′, xn−g(x′)) = f̃(x),

where the last equality defines f̃(x).

Next we show that L̃ is elliptic. Observe that if write

A =


a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 · · · · · · ann


and

G =


1 0 0 · · · ∂g

∂x1

0 1 0 · · · ∂g
∂x2

0 0 1 · · · ∂g
∂x3

...
...

...
. . .

...

0 0 · · · · · · 1 + ∂g
∂xn
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then we may write the matrix Ã = [ãij ]
n
i,j=1 as follows

Ã = GTAG.

It follows in particular that for any vector ξ = (ξ1, ..., ξn)T ∈ Rn that:

n∑
i,j=1

ãijξiξj = (Gξ)
T ·A · (Gξ) ≥ λ |Gξ|2 (21.11)

Clearly |Gξ|2 ≥ 1
2 |ξ| if |∇′g(x′)| < c for some constant c. Notice that (21.11)

states that
n∑

i,j=1

ãijξiξj ≥ λ |Gξ|2 ≥
λ

2
|ξ|2,

if |∇′g(x′)| < c, which is the left inequality in (21.10). The right inequality
(21.10) in is proved in an analogous way.

To verify that ãij , b̃i, c̃, f̃ ∈ Cα it is enough to verify that

sup
x,y

|aij(x′, xn + g(x′))− aij(y′, yn + g(y′))|
|x− y|α

only depends on ‖g‖C2,α and ‖aij‖Cα

(21.12)
and similarly for bi, ci and f . This since ãij is defined by terms aij(x

′, xn+g(x′))
multiplied by derivatives of g - which are clearly in Cα. So if aij(x

′, xn+g(x′)) ∈
Cα then ãij ∈ Cα by Proposition 17.2 (Prop 3 Part 6). To prove (21.12) we
notice that

sup
x,y

|aij(x′, xn + g(x′))− aij(y′, yn + g(y′))|
|x− y|α

=

= sup
x,y

|aij(x)− aij(y)|
|(x′, xn − g(x′))− (y′, yn − g(y′))|α

≤

≤
(

|x− y|
|(x′, xn − g(x′))− (y′, yn − g(y′))|

)α
[aij ]Cα .

But |x−y|
|(x′,xn−g(x′))−(y′,yn−g(y′)) | ≤ C where C only depend on ∇′g and thus it

follows that ãij ∈ Cα with norm only depending on ‖f‖Cα and ‖g‖C2,α .
Next we apply the straightening of the boundary argument to show regularity

in C2,α−domains. We also allow non-zero boundary data.

Proposition 21.1. Let g(x′) ∈ C2,α(B′2R(0)), g(0) = |∇′g(0)| = 0 and |∇g(x′)| ≤
c, where c > 0 is as in Lemma 21.1. Also let Ω = B2R(0) ∩ {xn > g(x′)}.

Then any solution u(x) in Ω to the following PDE

Lu(x) =

n∑
i,j=1

aij(x)
∂2u(x)

∂xi∂xj
+

n∑
i=1

bi(x)
∂u(x)

∂xi
+ c(x)u(x) = f(x) (21.13)

u(x) = h(x) on {xn = g(x′)} ∩B2R(0), (21.14)
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where L satisfies the assumptions of Theorem 21.1, will satisfy the estimate

‖u‖C2,α(BR(0)∩Ω) ≤ (21.15)

≤ C
(
‖h‖C2,α(∂Ω) + [f ]Cα(B+

R(0)) +

(
1

Rα
+R2

)
‖f‖C(B+

4R(0)) +
1

R2+α
‖u‖C(B+

2R(0))

)
,

where C = C(λ,Λ, n, aij , bi, c, g).

Proof: We define v(x) = u(x′, xn− g(x′)). Lemma 21.1 implies that v solves
an elliptic equation

L̃v(x) = f(x′, xn − g(x′)) in {(x′, xn − g(x′)) ∈ Ω} (21.16)

v(x) = h(x′, xn − gx′)) on {xn = 0}, (21.17)

where the coefficients of L̃ only depend on the coefficients of L and on g.
Corollary 21.1 implies that v satisfies the right estimates. But u(x) =

v(x′, xn + g(x′) so a simple application of the chain rule for differentiation will
imply that u satisfies (21.15).

21.3 Global regularity

We are now ready to glue the boundary and the interior regularity together to
prove global regularity. To that end we define C2,α−domains as domains whose
boundaries can be covered by balls of some fixed radius such that the boundary
can be represented by a C2,α graph in each ball. See the figure below.

X

Y

Figure 21.1: A C2,α-domain with the coordinate system for one ball Br(x
0)

indicated.

Definition 21.1. We say that a domain Ω is C2,α if there exists an r > 0 such
that for every x0 ∈ ∂Ω there exists a coordinate system such that Br(x

0) ∩ ∂Ω
is the graph of a C2,α−function in this coordinate system.

We say that a constant C depend on a C2,α-domain Ω if C depend only on
r and on the C2,α−norm of the boundary in the balls Br(x

0).
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Remark: The notion of a constant depending on a C2,α−domain is not
very rigorously defined here. In particular, if Ω is a C2,α domain with one r > 0
then it is a C2,α domain with respect to any smaller r. Also the C2,α-norm
of the functions whose graph coincidences with ∂Ω ∩ Br(x0) will depend on r
and also on the coordinate system we choose to represent ∂Ω ∩ Br(x0). This
ambiguity will not affect our discussion here since we will not keep track on
how constants depend on the domain. So in the rest of these notes one may
think of each C2,α-domain having a specific r > 0 attached to it and that we
represent the boundary ∂Ω ∩Br(x0) = {(x′, g(x′)); g ∈ C2,α} where we choose
the coordinate system in which we represent g so that g(0) = |∇′g(0)| = 0.

With this definition at hand it is easy to prove C2,α estimates for solutions
to linear PDE. We may cover a neighborhood of the boundary by balls such that
we can apply the boundary regularity in each ball. The rest of the domain can
be covered by a compact set K with a mixed distance to the boundary. Using
the interior regularity results we can estimate the C2,α−norm of the solution in
the compact set.
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Figure 21.2: A C2,α-domain with a compact set (with the zig-zag pattern),
where the solution is C2,α by interior estimates, and a number of balls where
the solution is C2,α by the boundary estimates.

Theorem 21.2. Assume that u ∈ C2,α(Ω), where Ω is a bounded domain, is a
solution to

n∑
i,j=1

aij(x)
∂2u(x)

∂xi∂xj
+

n∑
i=1

bi(x)
∂u(x)

∂xi
+ c(c)u(x) = f(x) in Ω (21.18)

u(x) = g(x) on ∂Ω. (21.19)

Assume furthermore that f(x), aij(x), bi(x), c(x) ∈ Cα(Ω) and that g(x) ∈ C2,α(∂Ω)
and that Ω is a C2,α−domain and that aij(x) satisfy the standard ellipticity as-
sumption

λ|ξ|2 ≤
n∑

i,j=1

aij(x)ξiξj ≤ Λ|ξ|2.
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Then there exists a constant C such that

‖u‖C2,α(Ω) ≤ C
(
‖f‖Cα(Ω) + ‖g‖C2,α(∂Ω) + ‖u‖C(Ω)

)
, (21.20)

here C = C(n, α, λ,Λ, aij , bi, c,Ω) where Λ, λ > 0 are the ellipticity constants of
the PDE.

Proof: We will prove the Theorem in three simple steps.
Step 1: Cover the domain.
Since Ω is a C2,α−domain we may cover the boundary ∂Ω by balls Br/4(z),

z ∈ ∂Ω, where Ω ∩ Br(x) is given by the graph of some function g ∈ C2,α. We
may also decrease r, if necessary, to assure that |∇g| < c in B′r where c is as in
Lemma 21.1.

Let K = {x ∈ Ω; dist(x, ∂Ω) ≥ r/4}. Then K is compact and K together
with the balls Br/2(z), z ∈ ∂Ω, will cover Ω.

Step 2: Local bounds for the norm.
For any ball y ∈ Ω we will either have Br/4(y) ⊂ K or Br/4(y) ⊂ Br/2(z)

for some z ∈ ∂Ω.
If Br/y(y) ⊂ K then Theorem 16.1 will imply that

‖u‖C2,α(Br/4(y)) ≤ ‖u‖C2,α(K) ≤
C

r2+α

(
‖f‖Cα(Ω) + ‖u‖C(Ω)

)
, (21.21)

where we have used that dist(K, ∂Ω) = r/4 and thus dist(K, ∂Ω)−(2+α) =
2−(2+α)r−(2+α) and that the factor 2−(2+α) may be included in the constant
C.

And if Br/4(y) ⊂ Br/2(z) then Proposition 21.1 will imply that

‖u‖C2,α(Br/4(y))∩Ω ≤ C
(
‖f‖Cα(Ω) + ‖h‖C2,α + ‖u‖C(Ω)

)
. (21.22)

Step 3: Global estimates and the conclusion of the Theorem.
Clearly (21.21) and (21.22) together implies that for any x ∈ Ω

|∇u(x)|+ |D2u(x)| ≤ C
(
‖f‖Cα(Ω) + ‖h‖C2,α + ‖u‖C(Ω)

)
, (21.23)

where C = C(n, α, λ,Λ, aij , bi, c,Ω) where we included the r dependence in
the dependence on Ω.

Therefore we only need to show that

|D2u(x)−D2u(y)|
|x− y|α

≤ C
(
‖f‖Cα(Ω) + ‖h‖C2,α + ‖u‖C(Ω)

)
. (21.24)

We will consider two (or three - depending on how you count) cases. Either
|x− y| < r/4 or |x− y| ≥ r/4. If |x− y| < r/4 and both x, y ∈ K then (21.24)
follows from (21.21) and if one of x or y, lets say y for definiteness, satisfies
y /∈ K then there must exists a ball Br/4(z), z ∈ ∂Ω such that y ∈ Br/4(z).
But then, since |x−y| < r/4, both x, y ∈ Br/4(y) ⊂ Br/2(z) and (21.24) follows
from (21.22). In any case, (21.24) follows if |x− y| < r/4.
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If |x− y| ≥ r/4 then

|D2u(x)−D2u(y)|
|x− y|α

≤ 4α

rα
|D2u(x)−D2u(y)| ≤ 2

4α

rα
sup
x∈Ω
|D2u(x)| ≤ (21.25)

≤ 2
24αC

rα
(
‖f‖Cα(Ω) + ‖h‖C2,α + ‖u‖C(Ω)

)
,

where we used (21.23) in the last inequality. Notice that the constant in the
right hand side of (21.25) only depend on r and n, α, λ,Λ, aij , bi, c,Ω. But r
only depend on Ω so we may conclude that the constant in (21.25) will only
depend on n, α, λ,Λ, aij , bi, c and Ω.

We have thus proved (21.24) which together with (21.23) implies the estimate
(21.20).

21.4 Barriers and an improved estimate.

We met barriers before when we proved that the solution we get from Perron’s
method attains the boundary data. In this section we will use barriers again to
control the ‖u‖C(Ω)−norm of solutions to

Lu(x) =

n∑
i,j=1

aij(x)
∂2u(x)

∂xi∂xj
+

n∑
i=1

bi(x)
∂u(x)

∂xi
+ c(x)u(x) in Ω (21.26)

when c(x) ≤ 0. This will allow us to get rid of the dependence of the ‖u‖C(Ω)−norm
on the right hand side in the estimates of Theorem 21.2. This is not only more
esthetically pleasing, but it also shows that the solution can be controlled by
only using the given data.

We begin by slightly refine our definition of barriers with respect to equation

Definition 21.2. Let Ω be a domain and ξ ∈ ∂Ω. We say that w is an upper
(lower) barrier at ξ for the partial differential equation (21.26) if

1. w ∈ C(Ω),

2. w > 0 in Ω \ {ξ}, w(ξ) = 0 and

3. w is a solution to Lw(x) ≤ f(x) in Ω (Lw(x) ≤ −f(x) for lower barriers).

If Ω is a domain and there exist an upper and a lower barrier at ξ for the
PDE (21.26) that ξ is a regular point.

Notice that if we can find a function satisfying the conditions for being an
upper barrier and Lw(x) ≤ −‖f‖C(Ω) then w(x) is both an upper and a lower
barrier and we say that w(x) is a barrier for (21.26).

Just as with the Laplace equation, the exterior ball condition implies the
existence of a barrier.
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Lemma 21.2. Let Ω be a bounded domain and L be given by (21.26) with
c(x) ≤ 0 and aij , bi, c, f ∈ C(Ω). Assume furthermore that aij(x) satisfies the
standard ellipticity condition

λ|ξ|2 ≤
n∑

i,j=1

aij(x)ξiξj

for some λ > 0 and every x, ξ ∈ Rn.
Then if ξ ∈ ∂Ω satisfies the exterior ball condition, that means that there

exists a ball Br(xξ) ∩ Ω = ∅ and Br(xξ) ∩ Ω = {ξ} see Definition 11.3, then
there exists a barrier at ξ.

Proof: There is no loss of generality to assume that Br(0) touches ∂Ω at the
point ξ - if not we may translate the coordinate system so that xξ becomes the
origin. Mimicking the proof of Corollary 13.1 we define

w(x) = C0

(
e−Nr

2

− e−N |x|
2
)
,

then w(x) > 0 for |x| > r and w(x) = 0 for |x| = r we also need to show that
Lw(x) ≤ −‖f‖C(Ω). To that end we do a calculation similar1 to (13.4)-(13.6)
and conclude that for some small c0 > 0 depending only on the diameter of Ω

Lw(x) ≤ −C0N
2r2λe−Nr

2

≤ −c0C0

if N is large enough (depending only on ‖bi(x)‖C(Ω), λ and r). Choosing C0 =
‖f‖C(Ω)

c0
implies that Lw(x) ≤ −‖f‖C(Ω) which finishes the proof.

Corollary 21.2. Let Ω be a bounded C2,α−domain and L be given by (21.26)
with c(x) ≤ 0 and aij , bi, c, f ∈ C(Ω). Assume furthermore that aij(x) satisfies
the standard ellipticity condition

λ|ξ|2 ≤
n∑

i,j=1

aij(x)ξiξj

for some λ > 0 and every x, ξ ∈ Rn.
Then there exists a barrier at every point of ∂Ω.

Proof: It is enough to notice that we may touch the boundary at any point
ξ ∈ ∂Ω from the outside by some ball Br(xξ). This since ∂Ω is a closed and
bounded set and thus compact and therefore the second derivatives of ∂Ω is
bounded from above by some constant 1/r > 0. From standard analysis we
know that the radius of curvature of ∂Ω is greater than r.

Using the barrier we may estimate ‖u‖C(Ω) in terms of ‖bi(x)‖C(Ω), ‖f‖C(Ω)

and r and formulate a sightly stronger version of the apriori estimates in The-
orem 21.2 if we also assume that c(x) ≤ 0 - which we need in order to use the
comparison principle: Corollary 13.1.

1The only difference in this and the previous calculations is that we have an extra minus
in the definition of the exponentials and that we multiply by a constant C0. However, the
calculation is still valid with minor changes.
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Theorem 21.3. Assume that u ∈ C2(Ω), where Ω is a bounded domain, is a
solution to

n∑
i,j=1

aij(x)
∂2u(x)

∂xi∂xj
+

n∑
i=1

bi(x)
∂u(x)

∂xi
+ c(c)u(x) = f(x) in Ω (21.27)

u(x) = g(x) on ∂Ω. (21.28)

Assume furthermore that f(x), aij(x), bi(x), c(x) ∈ Cα(Ω) and that g(x) ∈ C2,α(∂Ω)
and that Ω is a C2,α−domain and that aij(x) satisfy the standard ellipticity as-
sumption

λ|ξ|2 ≤
n∑

i,j=1

aij(x)ξiξj ≤ Λ|ξ|2.

Finally we assume that c(x) ≤ 0.
Then there exists a constant C such that

‖u‖C2,α(Ω) ≤ C
(
‖f‖Cα(Ω) + ‖g‖C2,α(∂Ω)

)
, (21.29)

here C = C(n, α, λ,Λ, aij , bi, c,Ω) where Λ, λ > 0 are the ellipticity constants of
the PDE.

Proof: From Theorem 21.2, in particular equation (21.20), we know that

‖u‖C2,α(Ω) ≤ C
(
‖f‖Cα(Ω) + ‖g‖C2,α(∂Ω) + ‖u‖C(Ω)

)
.

Therefore we only need to show that

‖u‖C(Ω) ≤ C
(
‖f‖Cα(Ω) + ‖g‖C2,α(∂Ω)

)
, (21.30)

as a matter of fact we will prove something slightly stronger:

‖u‖C(Ω) ≤ C
(
‖f‖Cα(Ω) + ‖g‖C(∂Ω)

)
, (21.31)

where C may depend on n, α, λ,Λ, aij , bi, c, and Ω.
According to Corollary 21.2 if Br(x

0) touches Ω at some point then there
exists a barrier

w(x) =
‖f‖C(Ω)

c0

(
e−Nr

2

− e−N |x−x
0|2
)
,

where N >> 1 only depends on ‖bi(x)‖C(Ω), λ and Ω. In particular, by the
comparison principle Corollary 13.1 it follows that

−‖g‖C(∂Ω) − w(x) ≤ u(x) ≤ ‖g‖C(Ω) + w(x) in Ω

since the inequalities holds on ∂Ω. But that implies that

‖u‖C(Ω) ≤ ‖g‖C(∂Ω) + ‖w‖C(Ω).

but the supremum norm ‖w‖C(Ω) will only depend on N and on the diameter
of Ω and linearly on ‖f‖C(Ω). This implies (21.31) which finishes the proof of
the Theorem.



Chapter 22

The Method of continuity.

With the strong regularity theory at hand it is not very difficult to prove ex-
istence of solutions. Before we show how thin is done let us prove a simple
proposition: the contraction mapping principle. Before we do that we need to
define what a contracting map is.

Definition 22.1. We say that a mapping L : B 7→ B from a Banach space B to
itself is a contraction, or that L is a contracting map, if there exists a constant
0 < τ < 1 such that

‖Lu− Lv‖B ≤ τ‖u− v‖B

for all u, v ∈ B.

Proposition 22.1. [The Contraction Mapping Principle.] Let L be a
contracting map on the Banach space B then there exists a unique u ∈ B such
that

Lu = u.

Proof: The proof is simple. Pick a random u0 ∈ B, say u0 = 0, and
inductively define

uk+1 = Luk.

Then, by the definition of uk and using that L is a contracting map,

‖uk+1 − uk‖B = ‖Luk − Luk−1‖B ≤

≤ τ‖uk − uk−1‖B ≤ τ‖Luk−1 − Luk−2‖B ≤

≤ τ2‖uk−1 − uk−2‖B ≤ ... ≤ τk‖u1 − u0‖B .

In particular, using the triangle inequality we see that, for k > l,

‖uk − ul‖B ≤
k−1∑
j=l

‖uj+1 − uj‖B ≤
k−1∑
j=l

τ j‖u1 − u0‖B =

161
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=
τ l − τk

1− τ
‖u1 − u0‖B ≤ τ l

‖u1 − u0‖B
1− τ

.

In particular, uk is a Cauchy sequence and thus converges to some u∞ ∈ B.
Next we notice that any contracting map is (uniformly) continuous. To see

this we notice that given an ε > 0 we may choose δ = ε
τ then ‖u − v‖B < δ

implies that ‖Lu− Lv‖B < ε. Therefore

u∞ = lim
k→∞

uk = lim
k→∞

Luk−1 = L lim
k→∞

uk−1 = Lu∞, (22.1)

where we used the definition on u∞ in the first equality, the definition of uk in
the second and continuity in the third equality. Equation (22.1) concludes the
proof.

The importance of the contraction mapping principle is that if we have two
PDE L1u(x) = f(x) and L2u(x) = f(x) and:

1. We can show that L1u(x) = f(x) in Ω and u(x) = g(x) on ∂Ω has a
solution.

2. We have estimates for the operator L1, that is if L1u(x) = F (x) then there
exists a constant C such that ‖u‖B ≤ CL1

‖F‖B .

3. The operator Lu(x) = L1u(x)−L2u(x) has small norm, that is if ‖Lu‖B =
‖L1u(x) − L2u(x)‖B ≤ c‖u‖B for a small enough constant c, that will
depend on CL1

.

Then L2u(x) = f(x) in Ω and u(x) = g(x) on ∂Ω has a solution.

Example: How the Contraction mapping halps to find solutions to PDE:
Consider the PDE

Lu(x) =
∑n
i,j=1 aij(x) ∂

2u(x)
∂xi∂xj

+
∑n
i=1 bi(x)∂u(x)

∂xi
+ c(x)u(x) = f(x) in Ω

u(x) = g(x) on ∂Ω,
(22.2)

where Ω is a C2,α−domain, aij , bi, c, f ∈ Cα(Ω) and g ∈ C2,α(∂Ω). Furthermore
we assume that for some small ε > 0 we have that ‖aij(x)−δij‖Cα(Ω) < ε where
δij is the Kronecker delta, ‖bi(x)‖Cα(Ω) < ε and ‖c(x)‖Cα(Ω) < ε.

We claim that the contracting mapping principle can be used to show that
there exists a solution to (22.2).

We may then define the operator

F : {u ∈ C2,α(Ω) u(x) = g(x) on ∂Ω} 7→ {u ∈ C2,α(Ω) u(x) = g(x) on ∂Ω},

so that given an F (u(x)) solves the following PDE

∆F (u(x)) = f(x) + (∆u(x)− Lu(x)) in Ω
F (u(x)) = g(x) on ∂Ω.

(22.3)

That F (v(x)) is well defined follows from the existence of a unique solution to
the Dirichlet problem for Laplace equation. Also, v(x) ∈ C2,α(Ω) it is clear that
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the right hand side in (22.3) is in Cα(Ω) and thus by our apriori estimates for
the Laplacian that F (v(x)) ∈ C2,α(Ω).

Next we claim, and this is the important step, that F is a contracting map
if ε > 0 is small enough. To see this we notice that for u, v ∈ C2,α(Ω), u(x) =
v(x) = g(x) on ∂Ω then

‖∆ (F (u(x))− F (v(x)))‖Cα(Ω) = ‖∆(u(x)− v(x))− L(u(x)− v(x))‖Cα(Ω) ≤

≤ Cε‖u(x)− v(x)‖C2,α(Ω),

where we used that the difference between the coefficients of the Laplacian and
L are less than ε in Cα−norm.

By the estimates add REF for the Laplace equation we can conclude that

‖F (u)− F (v)‖C2,α(Ω) ≤ Cε‖u(x)− v(x)‖C2,α(Ω),

where we also used that F (u) − F (x) = 0 on ∂Ω. So if ε ≤ 1
2C , where C only

depends on n, α then F is a contracting map. Thus, it exists a function u(x)
such that u(x) = F (u(x)). Substituting this u into (22.3) it follows that

∆u(x) = f(x) + (∆u(x)− Lu(x)) in Ω
u(x) = g(x) on ∂Ω.

It follows that u is a solution to (22.2).

In the above example we only used the following three conditions: (1) we
knew that we had solutions for the Laplacian, (2) that we have C2,α-estimates
for the Laplacian and (3) that the coefficients of L where close enough to the
coefficients of the Laplacian. This was enough to show that there exists a
solution to Lu(x) = f(x), therefore, the first condition is satisfied for L. We
also have C2,α−estimates for L and therefore the second condition is satisfied.
This implies that we can show existence of a solution to any elliptic PDE with
Cα coefficients ε-close to the coefficients of L. We may thus continue iteratively
and show that any elliptic PDE with Cα−coefficients admits a solution.

To formalize the above argument we let

Lu(x) =
∑n
i,j=1 aij(x) ∂

2u(x)
∂xi∂xj

+
∑n
i=1 bi(x)∂u(x)

∂xi
+ c(x)u(x) = f(x) in Ω

(22.4)
and we define the linear elliptic PDE Ltu(x) = (1 − t)∆u(x) + tLu(x). By
the argument in the example above we may show that Ltu(x) = f(x) has a
solution for t ∈ [0, ε] for ε > 0 small enough, depending only on the operator
L, α ∈ (0, 1), the domain Ω and the dimension. Applying the same argument
(as in the example) with Lε, for which we now know there exists a solution, we
can show that Ltu(x) = f(x) has a solution for t ∈ [0, 2ε]. Iterating will lead to
the existence of solutions for any t ∈ [0, kε], for any k ∈ N as long as Ltu(x) is
elliptic. In particular, L1u(x) = f(x) has a solution which is the same as saying
that Lu(x) = f(x) has a solution. This method of proof is usually called the
method of continuity.
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Proposition 22.2. [The method of continuity.] Let L0 : B 7→ V and
L1 : B 7→ V be two linear operators between the Banach spaces B and V .
Furthermore we denote Lt = (1 − t)L0 + tL1, for t ∈ [0, 1]. Also assume that
there exists a constant C0 such that the following estimate holds

‖u− v‖B ≤ C0‖Lt(u− v)‖V for every t ∈ [0, 1]. (22.5)

and that the operators are bounded, that is there exists a constant C1 such that

‖Ltu‖V ≤ C1‖u‖B . (22.6)

Then Ltu = f has a solution for every f ∈ V for every t ∈ [0, 1] if and only
if there exists one t0 ∈ [0, 1] such that Lt0u = f for every f ∈ V .

Proof: Clearly it is enough to show that if there exists one t0 ∈ [0, 1] such
that Lt0u = f then a solutions exists for every t ∈ [0, 1].

We assume that Lt0u = f has a solution for every f ∈ V and define the map

F : u 7→ L−1
t0 (f + Lt0u− Lt0+εu)︸ ︷︷ ︸

∈V

∈ B.

This map is well defined since Lt0u = f admits a solution for every f ∈ V
and, from (22.5) it follows that, the solution to Lt0u = f is unique. To see
uniqueness we simply notice that if u, v ∈ B are two solutions then ‖u− v‖B ≤
C‖Lt0(u− v)‖V = ‖f − f‖V = 0 since the operator is linear.

We claim that F is a contraction if |ε| is small enough (depending only on
C). To see this we consider u, v ∈ B and calculate

‖F (u)−F (v)‖B =
∥∥(L−1

t0 (f + Lt0u− Lt0+εu)
)
−
(
L−1
t0 (f + Lt0v − Lt0+εv)

)∥∥
B

=

=
∥∥L−1 (εL0(u− v)− εL1(u− v))

∥∥
B
≤ 2|ε|C0C1‖u− v‖B , (22.7)

where we used the triangle inequality and (22.5)-(22.6) in the last inequality
and the definition of Lt in the second equality.

We see that if ε < 1
C then F is a contraction. We may conclude that for

every |ε| < 1
C there exists a solution to F (u) = u, that is

Lt0u = f − Lt0u− Lt0+εu⇒ Lt0+εu = f.

In particular Ltu = f admits a solution for every t ∈ [t0− 1/(2C), t0 + 1/(2C)].
Repeating the argument for any t1 = t0±1/(2C) we see that Ltu = f admits

a solution for every t ∈ [t0 − 2/(2C), t0 + 2/(2C)]. Inductively it follows that
the Ltu = f admits a solution for every t ∈ [t0 − k/(2C), t0 + k/(2C)] ∩ [0, 1].
The Proposition follows by choosing k large enough, say k > 2C.



Chapter 23

Existence theory for
variable coefficients.

In the last chapter we saw that the method of continuity is what we need in
order to show existence of our PDE. In this chapter we carry out this argument
and prove existence for a general elliptic PDE with variable coefficients by the
method of continuity.

Theorem 23.1. Let Ω be a bounded C2,α−domain and g ∈ C2,α(∂Ω). Also let

Lu(x) =

n∑
i,j=1

aij(x)
∂2u(x)

∂xi∂xj
+

n∑
i=1

bi(x)
∂u(x)

∂xi
+ c(x)u(x) in Ω

where aij(x), bi(x), c(x), f(x) ∈ Cα(Ω), c(x) ≤ 0 and aij(x) = aji(x) satisfies
the following ellipticity condition

λ|ξ|2 ≤
n∑

i,j=1

aij(x)ξiξj ≤ Λ|ξ|2

for some Λ, λ > 0 and every x, ξ ∈ Rn.
Then there exists a unique solution u ∈ C2,α(Ω) to the boundary value prob-

lem
Lu(x) = f(x) in Ω
u(x) = g(x) on ∂Ω

for every f(x) ∈ Cα(Ω) and g(x) ∈ C2,α(∂Ω).

Proof: We will use the method of continuity, Proposition 22.2. We define
L0 = ∆ and L1 = L. Then there exists a solution u0 ∈ C2,α(Ω) to

L0u0(x) = f(x) in Ω
u0(x) = g(x) on ∂Ω.

165
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So it is enough to show that Lt = (1− t)L0 + tL1 satisfies the estimate (22.5)
with B = C2,α(Ω) and V = Cα(Ω):

‖u− v‖C2,α(Ω) ≤ C‖Lt(u− v)‖Cα(Ω), (23.1)

for any functions u, v ∈ C2,α(Ω) such that u(x) = v(x) = g(x) on ∂Ω. Notice
that Theorem 21.3 implies that

‖u−v‖C2,α(Ω) ≤ C

‖Lt(u− v)‖Cα(Ω) + ‖u− v‖C2,α(∂Ω)︸ ︷︷ ︸
=0

 = C‖Lt(u−v)‖Cα(Ω),

where C = C(n, α, λ,Λ, aij , bi, c,Ω). But this is exactly (23.1).
Therefore the Theorem follows from the method of continuity.



Chapter 24

The Perron Method.

So far we have, in Theorem 23.1, shown that there exists solutions to the fol-
lowing elliptic PDE

Lu(x) =
∑n
i,j=1 aij(x) ∂

2u(x)
∂xi∂xj

+
∑n
i=1 bi(x)∂u(x)

∂xi
+ c(x)u(x) = f(x) in Ω

u(x) = g(x) on ∂Ω,
(24.1)

if the domain Ω and g(x) both are C2,α and the coefficients of the PDE are
Cα, at least if c(x) ≤ 0. Even though this is an amazing result (at least one
must admit that it involves very complicated constructions...) it is somewhat
unsatisfying in several ways. First of all it seems to be too strong to assume that
g ∈ C2,α(∂Ω) since we never have to differentiate g(x). Second, the assumption
that Ω is C2,α also seems strong, in particular for many applications. Thirdly,
we did not need so strong assumptions on the domain or the boundary data to
show existence of solutions for the Laplacian case.

In this final chapter we will use Perron’s method to prove that (24.1) has a
solution even for continuous g(x) and domains Ω that are regular (that is has a
barrier at every point of the boundary).

Perron’s method was to show that the solution u(x) is given by

u(x) = sup
v∈Sg(Ω)

v(x) (24.2)

where

Sg(Ω) = {v ∈ C(Ω); v(x) is a sub-solution to (24.1), v(x) ≤ g(x) on ∂Ω}

There are some small technical problems that we need to handle in order to
define u(x) according to (24.2).

First, we need to be able to extend the concept of sub-solution to functions
that are continuous - before we used the definition that v(x) was a sub-solution
if v ∈ C2(Ω) Lv(x) ≥ 0. This definition requires that v ∈ C2(Ω) which would
result in that the supremum of two sub-solutions might not be a sub-solution.
We will use the comparison principle to define sub-solutions in this chapter.

167
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Second, an important step in the proof of Perron’s method was to make a
harmonic replacement in Br(x

0) ⊂ Ω. That is to define

ṽ(x) =

{
v(x) for x ∈ Ω \Br(x0)
w(x) for x ∈ Br(x0),

where w(x) solves Lw(x) = f(x) in Br(x
0) and w(x) = v(x) on ∂Br(x

0). For
this we need to be able to solve the Dirichlet problem for L in any ball Br(x

0)
with continuous boundary data. We also need to show that the replacement,
hereafter called the L−harmonic replacement, is a sub-solution.

Fortunately, we have developed so much PDE theory so these last things
will be comparatively simple. We begin to show existence of solutions to (24.1)
when Ω = Br(0) and g ∈ C(∂Ω).

Proposition 24.1. Let

Lu(x) =

n∑
i,j=1

aij(x)
∂2u(x)

∂xi∂xj
+

n∑
i=1

bi(x)
∂u(x)

∂xi
+ c(x)u(x) in Br(0)

where aij(x), bi(x), c(x), f(x) ∈ Cα(Ω), c(x) ≤ 0 and aij(x) = aji(x) satisfies
the following ellipticity condition

λ|ξ|2 ≤
n∑

i,j=1

aij(x)ξiξj ≤ Λ|ξ|2

for some Λ, λ > 0 and every x, ξ ∈ Rn.
Then there exists a unique solution u ∈ C2,α

int (Br(0))∩C(Br(0)) to the bound-
ary value problem

Lu(x) = f(x) in Br(0)
u(x) = g(x) on ∂Br(0)

for every f(x) ∈ Cα(Br(0)) and g(x) ∈ C(∂Br(0)).

Proof: We may find a sequence gε ∈ C2,α(∂Br(0)) such that gε(x) → g(x)
uniformly as ε → 0. To see this we could for instance define the spherical
mollifier

φ̂ε(x) = cεφε(x),

where φε is the standard mollifier, see section 2.3, and cε is chosen so that∫
∂Br(0)

φ̂ε(x− y)dA∂Br(0)(x) = 1 for any y ∈ ∂Br(0). Then

gε(x) =

∫
∂Br(0)

φ̂ε(x− y)g(y)dA∂Br(0)(y)

would satisfy gε ∈ C2,α(∂Br(0)) such that gε(x)→ g(x) uniformly as ε→ 01.

1The proof is exactly the same as the proof of Lemma 2.2.



169

From Theorem 23.1 it follows that there exists a solution uε(x) to

Luε(x) = f(x) in Br(0)
uε(x) = gε(x) on ∂Br(0).

Also, from Theorem 16.1,

‖uε‖C2,α
int (Br(0)) ≤ C

(
‖f‖Cα

int,(2)
(Br(0)) + ‖uε‖C(Br(0))

)
. (24.3)

Replicating the argument (21.31) we see that

‖uε‖C(Br(0)) ≤ C
(
‖f‖Cα(Br(0)) + ‖gε‖C(∂Br(0))

)
(24.4)

where C may depend on n, α, λ,Λ, aij , bi, c,.
The two estimates (24.3) and (24.4) together implies

‖uε‖C2,α
int (Br(0)) ≤ C

(
‖f‖Cα(Br(0)) + ‖gε‖C(∂Br(0))

)
.

In particular, uε forms and equicontinuous family of functions in Br(0). So,
by the Arzela-Ascoli Theorem, we may find a sub-sequence uεj (x) → u(x) in
C2(Br(0)) where u(x) solves

Luε(x) = f(x) in Br(0).

We only need to verify that u(x) = g(x) = limε→0 gε(x) on ∂Br(0). We will
show that by showing that uε → u uniformly on Br(0) and thus, since uε is
continuous for each ε, it follows that u is continuous on Br(0).

Since gε → g uniformly, it follows that wδ,ε(x) = uε(x)− uδ(x) satisfies

Lwε,δ(x) = 0 in Br(0)
wε,δ(x) = gε(x)− gδ(x) on ∂Br(0).

In particular, by the maximum principle (Lemma 13.1) that

sup
Br(0)

|wε,δ(x)| = sup
∂Br(0)

|gε(x)− gδ(x)|.

Letting δ → 0 we see that

sup
Br(0)

|wε,0(x)| = sup
Br(0)

|uε(x)− u(x)| = sup
∂Br(0)

|gε(x)− g(x)|

and it follows that uε → u uniformly since gε → g uniformly. That u ∈ C(Br(0))
follows directly from the fact that u is the uniform limit of a sequence of con-
tinuous functions.

Next we need to extend the definition of sub-solution to include merely
continuous functions. When we defined sub-solutions for the Laplace equa-
tion, Definition 7.2, we defined a sub-solution to be any function v ∈ C2(Ω)
such that ∆v(x) ≥ 0. However, for the Perron method we need that the
L−harmonic replacement of a sub-solution is still a sub-solution. And in general
the L−harmonic replacement is not C2(Ω). We therefore define sub-solution in
the following way.
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Definition 24.1. We say that v(x) ∈ C(Ω) is a sub-solution to (24.1) if for
every ball Br(x

0) ⊂ Ω we have that v(x) ≤ w(x) in Br0(x0) where w(x) is the
solution2 to

Lw(x) = f(x) in Br0(x0)
w(x) = v(x) on ∂Br0r(x

0).
(24.5)

Remark:Just as we defined sub-harmonic by using the sub-meanvalue prop-
erty we define sub-solution by using the comparison principle (Corollary 13.1).
In particular if v(x) ∈ C2(Ω) then it follows from the comparison, principle that
Lv(x) ≥ f(x). Thus the new definition that v(x) should satisfy the comparison
principle is equivalent to the definition that Lv(x) ≤ f(x) for v ∈ C2(Ω). How-
ever, the new definition only need v ∈ C(Ω) which renders the new definition
more flexible.

With this definition it is easy to prove that taking the L−harmonic replace-
ment preserves sub-solutions. The proof is almost line for line the same as the
proof of Lemma 11.1.

Lemma 24.1. Suppose that v ∈ C(Ω) is a sub-solution to (24.1) in Ω. More-
over, we assume that Br0(x0) ⊂ Ω. If we define ṽ to by the L-harmonic replace-
ment of v(x) in Br0(x0):

ṽ(x) =

{
v(x) if x ∈ Ω \Br0(x0)
w(x) for x ∈ Br0(x0),

where w(x) is the solution to (24.5).
Then ṽ is sub-harmonic in Ω.

Proof: We need to show that

v(x) ≤ h(x) in Br(y) (24.6)

for any ball Br(y) ⊂ Ω, where h̃(x) solves

Lh̃(x) = f(x) in Br(y)

h̃(x) = ṽ(x) on ∂Brr(y).

If Br(y) ⊂ Br0(x0) or Br(y) ⊂ Ω \ Br0(x0) then (24.6) is clear since ṽ is a
solution, and thus equal to h̃(x) in the first case, and a sub-solution, and thus
ṽ(x) ≤ h̃(x) by definition, in the second case. It is therefore enough to show
(24.6) in the case when Br(y) ∩ Br0(x0) 6= ∅ and Br(y) \ Br0(x0) 6= ∅. We fix
such a ball and continue to prove the Lemma in the same way we proved Lemma
11.1.

Step 1: In Br(y) \Br0(x0) we have that h̃ ≥ ṽ.

Let h solve
Lh = f(x) in Br(y)
h(x) = v(x) on ∂Br(y),

2The existence of such solution is guaranteed by Proposition 24.1.
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then, since v(x) is a sub-solution it follows that v ≤ h in Br(y).
Since v ≤ ṽ, which again follows from the assumption that v(x) is a sub-

solution, we have that h ≤ h̃ on ∂Br(y) and since both h and h̃ solves L· = f(x)
in Br(y) it follows from the Comparison principle that h̃ ≥ h in Br(y). That is
v ≤ h ≤ h̃ in Br(y).

Using that ṽ = v in Br(y) \Br0(x0) the claim in step 1 follows.

Step 2: We claim that h̃ ≥ ṽ in Br(y) ∩Br0(x0).

By step 1 we know that h̃ ≥ ṽ inBr(y)\Br0(x0). Since ṽ and h̃ are continuous
functions it follows that h̃ ≥ ṽ on

(
∂Br0(x0)

)
∩ Br(y). On

(
∂Br(y)

)
∩ Br0(x0)

we have that h̃ = ṽ by the definition of h̃.
In particular, Lṽ = Lh̃ = f(x) in Br0(x0)∩Br(y) and ṽ ≤ h̃ on ∂

(
Br0(x0)∩

Br(y)
)
. It follows that τ(x) = ṽ − h̃ solves

Lτ(x) = 0 in Br0(x0) ∩Br(y)
τ(x) ≤ 0 on ∂

(
Br0(x0) ∩Br(y)

)
.

By the maximum principle, Lemma 13.1, τ(x) ≤ 0 in Br0(x0) ∩ Br(y), that is
ṽ ≤ h̃ in Br0(x0) ∩Br(y).

This proves that ṽ(x) satisfies (24.6) for any ball Br(y) and thus concludes
the proof.

After these preliminary considerations we are now ready to prove existence
by Perron’s method. We will prove it in a slightly different way than we did for
the Laplacian. Partly, because I am bored and partly since we have not proved
a strong maximum principle for general elliptic equations.

Theorem 24.1. [The Perron Method.] Let Ω be a bounded domain and
g ∈ C(∂Ω). Define

u(x) = sup
v∈Sg(Ω)

v(x),

where

Sg(Ω) = {v ∈ C(Ω); v(x) is a sub-solution to (24.1), v(x) ≤ g(x) on ∂Ω},

and the coefficients of L satisfy the following assumptions aij(x), bi(x), c(x), f(x) ∈
Cα(Ω), c(x) ≤ 0 and aij(x) = aji(x) satisfies the following ellipticity condition

λ|ξ|2 ≤
n∑

i,j=1

aij(x)ξiξj ≤ Λ|ξ|2

for some Λ, λ > 0 and every x, ξ ∈ Rn.
Then

n∑
i,j=1

aij(x)
∂2u(x)

∂xi∂xj
+

n∑
i=1

bi(x)
∂u(x)

∂xi
+ c(x)u(x) = f(x) in Ω.

Furthermore, if ξ ∈ ∂Ω is a regular point then limx→ξ u(x) = g(ξ).
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Proof: We will prove the Theorem in several steps.

Step 1: Sg is non-empty and bounded from above and therefore u(x) is well
defined.

In the proof of Theorem 21.3 we constructed a barrier w(x) such that
L(−w(x)) ≥ f(x) in Ω and −w(x) ≤ g(x) on ∂Ω. Thus −w(x) ∈ Sg(Ω) which
proves that Sg(Ω) 6=. Also, w(x) is a super-solution that satisfies w(x) ≥ g(x)
which implies that w(x) ≥ v(x) for any v(x) ∈ Sg(Ω). It follows that Sg(Ω) is
bounded from above.

Step 2: u(x) is continuous.

We will argue by contradiction and assume that

lim
xj→x0

u(xj) = lim sup
x→x0

u(x) > lim inf
x→x0

u(x) = lim
yj→x0

u(yj)

for some x0 ∈ Ω. We may thus find two points xJ and yJ such that

u(xJ)− u(yJ) > κ > 0 (24.7)

and |xJ − yJ | is smaller than a quantity that we will choose later.
Since Ω is open there exists a ball B4r(x

0) ⊂ Ω. We may therefore, by
increasing J if necessary assume that B2r(X

J) ⊂ Ω and yJ ∈ Br(XJ). Now let
vj(x) ∈ Sg(Ω) be a sequence such that vj(xJ) → u(xJ). We may assume that
vj is bounded, if not sup

(
vj(x),−w(x)

)
∈ Sg(Ω) will be a bounded function

with the same properties as vj . We also define the L−harmonic replacement of
vj(x) in B2r(x

J) to be ṽj . Then Lṽj = f(x) in B2r(x
J) and ṽj is bounded. It

follows from Theorem 16.1 that ‖ṽj‖C2,α(Br(xJ )) is uniformly bounded. We may
conclude that

sup
x∈Br(xJ )

|∇ṽj(x)| ≤ C0 (24.8)

for some constant C0 independent of j.
Since xJ , yJ ∈ Br(XJ) we can use the the mean value theorem to estimate

ṽj(yJ)− ṽj(xJ) ≤ C0|xJ − yJ |, (24.9)

where C0 is the constant in (24.8). But we may choose |xJ − yJ | as small as we
want by choosing J large enough. Choosing J so large that |xJ − yJ | < κ

2C0
in

(24.9) together with (24.7) will give the following contradiction:

κ

2
> C0|xJ − yJ | ≥ lim

j→∞

(
ṽj(xJ)− ṽj(yJ)

)
≥ u(xJ)− u(yJ) > κ,

where we also used that u(yJ) ≥ limj→∞ ṽj(yJ).

Step 3: u(x) is a sub-solution.

We need to show that if Br(y) ⊂ Ω and

Lh = f(x) in Br(y)
h(x) = u(x) on ∂Br(y),
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then u(x) ≤ h(x) in Br(y). Again we will argue by contradiction. Therefore we
assume that there exists a point z ∈ Br(y) and a κ > 0 such that u(z) = h(z)+κ.

Let vj(x) ∈ Sg(Ω) be such that vj(z) → u(z) and denote by ṽj the L-
harmonic replacement of vj in Br(y). Then ṽj ∈ Sg(Ω) by Lemma 24.1 and
vj(z) ≤ ṽj(z) since vj a sub-solution. We can conclude that ṽj(z)→ u(z).

Observe that ṽj(x) ≤ u(x) = h(x) on ∂Br(y) and since Lṽj(x) = f(x) =
Lh(x) in Br(y) it follows from the comparison principle. In particular, ṽj(z)→
u(z) and ṽj(z) ≤ h(z) = u(z)− κ which clearly is a contradiction.

Step 4: u(x) is a solution.

Since u(x) is a sub-solution it follows that u ∈ Sg(Ω). Also any L-harmonic
replacement ũ of u will be a sub-solution by Lemma 24.1. Since ũ ∈ Sg(Ω) it
follows that u(x) = supv∈Sg(Ω) v(x) ≥ ũ(x) and since u(x) is a sub-solution it
follows that u(x) ≤ ũ(x). We can conclude that u(x) = ũ(x) for any L-harmonic
replacement ũ of u. Thus Lu(x) = f(x) for any ball Br(y) ⊂ Ω. It follows that
u(x) is a solution.

Step 5: If ξ ∈ ∂Ω is a regular point then limx→ξ u(x) = g(ξ).

If ξ ∈ ∂Ω is a regular point then there exists a barrier at ξ by definition.
The proof that the existence of a barrier implies that limx→ξ u(x) = g(ξ) was
done in Theorem 11.2.

We may end these notes by stating a general existence result.

Corollary 24.1. Let Ω be a bounded domain that satisfies the exterior ball
property at every point ξ ∈ ∂Ω. Then there exists a unique solution u ∈ C2,α

int (Ω)
to the Dirichlet problem:∑n

i,j=1 aij(x) ∂
2u(x)

∂xi∂xj
+
∑n
i=1 bi(x)∂u(x)

∂xi
+ c(x)u(x) = f(x) in Ω

u(x) = g(x) on ∂Ω

where aij(x), bi(x), c(x), f(x) ∈ Cα(Ω), g(x) ∈ C(∂Ω), c(x) ≤ 0 and aij(x) =
aji(x) satisfies the following ellipticity condition

λ|ξ|2 ≤
n∑

i,j=1

aij(x)ξiξj ≤ Λ|ξ|2

for some Λ, λ > 0 and every x, ξ ∈ Rn.

Proof: The existence of a solution follows from Theorem 11.2 and that the
exterior ball condition implies that the boundary point is regular follows from
Lemma 21.2.


