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Chapter 1

Green’s Functions.

In this section we will begin to understand how to solve the Dirichlet problem
in a domain Ω. The Dirichlet problem consists of finding a u ∈ C2(Ω) ∩ C(Ω)
solving

∆u(x) = f(x) in Ω
u(x) = g(x) on ∂Ω.

(1.1)

where f ∈ Cα(Ω) and g ∈ C(∂Ω) are given functions.
In this chapter we will investigate what the theory from the previous chapter

would imply for solutions to (1.1). This will lead to the concept of a Green’s
function which is similar to the fundamental solution - but for a given domain.
However, we can not, in general, calculate the Green’s function. But for certain
simple domains, with much symmetry, it is possible to explicitly calculate the
Green’s function. We will calculate the Green’s function for the upper half space
Rn+ = {x ∈ Rn; xn > 0} and for a ball Br(0).

1.1 An informal motivation for the concept of
Green’s functions.

To motivate the introduction of Green’s functions we have to look at the theory
we have developed so far - that is all we have. In particular we have shown that
we may define a solution to ∆u(x) = f(x) for any f ∈ Cαc (Rn) by

u(x) =

∫
Rn
N(x− ξ)f(ξ)dξ. (1.2)

Using that ∆u(x) = f(x) we arrive at

u(x) =

∫
Rn
N(x− ξ)∆ξu(ξ)dξ.

Let us try to see if the same argument applies to solutions to (1.1). To that

1



2 CHAPTER 1. GREEN’S FUNCTIONS.

end we assume that u ∈ C2,α(Ω) and define

ũ(x) =

∫
Ω

N(x− ξ)∆u(x)dx.

If u(x) where defined according to (1.2) for some f ∈ Cαc (Rn) and Ω = Rn
then ũ(x) = u(x). But we don’t expect, in general, that ũ(x) = u(x) for any
u ∈ C2,α(Ω) for an arbitrary Ω. The point is that, using the explicit expression
for ũ(x), we can calculate the difference ũ(x) and see what mathematics gives
us back and hopefully it will give us some information about u.

Therefore we estimate∫
Ω

N(x−ξ)∆u(x)dx =

∫
Bε(x)

N(x−ξ)∆u(ξ)dξ+

∫
Ω\Bε(x)

N(x−ξ)∆u(ξ)dξ = I1+I2.

(1.3)

+

∫
Ω\Bε(x)

N(x− ξ)∆u(ξ)dξ = I1 + I2.

We expect I1 to be small, as a matter of fact:

|I1| ≤ sup
Bε(x)

|∆u|
∫
Bε(x)

C

|x− ξ|n−2
dξ ≤ C sup

Bε(x)

|∆u|ε2,

where we assumed, for definiteness, that n ≥ 3. To calculate I2 we use the
second Green formula and conclude

I2 =

∫
Ω\Bε(x)

N(x− ξ)∆u(ξ)dξ =

=

∫
Ω\Bε(x)

u(ξ)∆ξN(x−ξ)dξ+
∫
∂Ω

(
N(x− ξ)∂u(ξ)

∂ν(ξ)
− u(ξ)

∂N(x− ξ)
∂ν(ξ)

)
dA∂Ω(ξ)+

+

∫
∂Bε(x)

(
N(x− ξ)∂u(ξ)

∂ν(ξ)
− u(ξ)

∂N(x− ξ)
∂ν(ξ)

)
dA∂Bε(x)(ξ) = I3 + I4 + I5.

Notice that I3 = 0 since ∆ξN(x− ξ) = 0 in Ω \Bε(x). Next we look at I5 and
estimate

I5 =

∫
∂Bε(x)

− 1

(n− 2)ωn

1

εn−2

∂u(ξ)

∂ν
dξ +

∫
∂Bε(x)

− 1

ωn

1

εn−1
u(ξ)dξ.

That is

|I5 − u(x)| ≤

∣∣∣∣∣
∫
∂Bε(x)

− 1

(n− 2)ωn

1

εn−2

∂u(ξ)

∂ν
dξ

∣∣∣∣∣+ (1.4)

+

∣∣∣∣∣
∫
∂Bε(x)

1

ωn

1

εn−1
(u(ξ)− u(x)) dξ

∣∣∣∣∣ ≤ supΩ |∇u|
n− 2

ε+ sup
∂Bε(x)

|u(ξ)− u(x)|,

where the first term goes to zero as ε→ 0 since |∇u| is bounded (we assume that
u ∈ C2(Ω)) and the second term goes to zero as ε → 0 since u is continuous.
We can thus conclude that I5 → u(x) as ε→ 0.
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To summarize, we have proven that∫
Ω

N(x− ξ)∆u(ξ)dξ = I1 + I2 = 0 + I3 + I4 + I5 =

= 0 + 0 +

∫
∂Ω

(
N(x− ξ)∂u(ξ)

∂ν(ξ)
− u(ξ)

∂N(x− ξ)
∂ν(ξ)

)
dA∂Ω(ξ) + u(x),

as ε→ 0.
Rearranging terms we arrive at

u(x) =

∫
Ω

N(x−ξ)∆u(ξ)dξ−
∫
∂Ω

(
N(x− ξ)∂u(ξ)

∂ν(ξ)
− u(ξ)

∂N(x− ξ)
∂ν(ξ)

)
dA∂Ω(ξ).

(1.5)
So if u(x) was a solution to (1.1) then

u(x) =

∫
Ω

N(x− ξ)f(ξ)dξ −
∫
∂Ω

(
N(x− ξ)∂u(ξ)

∂ν(ξ)
− g(ξ)

∂N(x− ξ)
∂ν(ξ)

)
dA∂Ω(ξ),

(1.6)
this is a rather good expression but it has one serious flaw. We do not know
what value ∂u

∂ν has on ∂Ω. If we new that we could calculate u(x) by just using

f(x), g(x) and ∂u
∂ν . But if N(x − ξ) happened to be equal to zero on ∂Ω then

the troublesome term ∫
∂Ω

N(x− ξ)∂u(ξ)

∂ν(ξ)
dA∂Ω(ξ)

in equation (1.5) would be equal to zero and (1.6) would become

u(x) =

∫
Ω

N(x− ξ)f(ξ)dξ +

∫
∂Ω

g(ξ)
∂N(x− ξ)
∂ν(ξ)

dA∂Ω(ξ) (1.7)

and we would have a representation formula for u(x) in terms of the given data
f(x) and g(x). This motivates us to define a function G(x, ξ) that has similar
properties as N(x− ξ) but so that G(x, ξ) = 0 for ξ ∈ ∂Ω.

Definition 1. Let Ω be a domain with C1 boundary and assume that for every
x ∈ Ω we have a solution φx(ξ) ∈ C2(Ω) ∩ C(Ω) to

∆φx(ξ) = 0 in Ω
φx(ξ) = N(x− ξ) on ∂Ω.

(1.8)

Then we say that
G(x, ξ) = N(x− ξ)− φx(ξ)

is the Green’s function in Ω.

Remark: Notice that until we can prove that φx(ξ) is a unique solution to
(1.8) we have on right to say that G(x, ξ) is the Green’s function since there
might be many Green’s functions satisfying the definition. Later on we will
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prove that φx is indeed the unique solution and that we are therefore justified
in calling G the Green’s function.

Since the Green’s function G(x, ξ) has the same type of singularity as N(x−
ξ) at x = ξ so there is some hope that the above calculations should work in
the same way for G(x, ξ) as they did for N(x − ξ). Moreover, G(x, ξ) = 0 for
ξ ∈ ∂Ω which makes it reasonable to hope that the representation formula (1.7)
would work for G(x, ξ) in place of N(x− ξ). However, we need to prove this.

1.2 The Green’s function.

The main reason to introduce Green’s functions is the following Theorem.

Theorem 1. Assume that u ∈ C2(Ω)∩C1(Ω) and that u(x) solves (1.1), where
Ω is a bounded domain with C1 boundary. Assume furthermore that G(x, ξ) is
the Green’s function for Ω. Then

u(x) =

∫
Ω

G(x, ξ)f(ξ)dξ +

∫
∂Ω

(
g(ξ)

∂G(x, ξ)

∂ν

)
dA∂Ω(ξ). (1.9)

Proof: The proof is very similar to the calculations we did in the previous
section. We will use use Green’s second identity on G(x, y) ≡ N(x− y)− φx(y)
and u(y). ∫

Ω

G(x, ξ)∆u(ξ)dξ =

=

∫
Bε(x)

G(x, ξ)∆u(ξ)dξ +

∫
Ω\Bε(x)

−u(y) ∆yG(x, y)︸ ︷︷ ︸
=0

+G(x, y)∆yu(y)

 dy =

=

 Green’s Second
formula on the
second integal


=

∫
Bε(x)

G(x, ξ)∆u(ξ)dξ +

∫
∂Ω

u(ξ)− ∂G(x, ξ)

∂ν
+G(x, ξ)︸ ︷︷ ︸

=0

∂u(ξ)

∂ν

 dA∂Ω(ξ)+

(1.10)

+

∫
∂Bε(x)

(
−u(ξ)

(
∂N(x− ξ)

∂ν
+
∂φx(ξ)

∂ν

)
− (N(x− ξ)− φx(ξ))

∂u(ξ)

∂ν

)
dA∂Bε(x)(ξ) =

=

∫
Bε(x)

G(x, ξ)∆u(ξ)dξ −
∫
∂Ω

u(ξ)
∂G(x, ξ)

∂ν
dA∂Ω(ξ)+

+

∫
∂Bε(x)

(
u(ξ)

∂φx(ξ)

∂ν
− φx(ξ)

∂u(ξ)

∂ν

)
dA∂Bε(x)(ξ) + I5,

where I5 → u(x) as ε→ 0 is the same as the expression in the previous section,
see formula (1.4).
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It is easy to estimate the remaining terms, in particular∣∣∣∣∣
∫
Bε(x)

G(x, ξ)∆u(ξ)dξ

∣∣∣∣∣ ≤ sup
Ω
|∆u(x)|

(∫
Bε(x)

|N(x− ξ)| dξ +

∫
Bε(x)

|φ(ξ)| dξ

)
≤

≤ C sup
Ω
|∆u(x)|

(
ε2 + sup

Ω
|φ|εn

)
→ 0

as ε→ 0. And similarily∣∣∣∣∣
∫
∂Bε(x)

(
u(ξ)

∂φx(ξ)

∂ν
− φx(ξ)

∂u(ξ)

∂ν

)
dA∂Bε(x)(ξ)

∣∣∣∣∣ ≤
≤ C

(
sup

Ω
|u| sup

Ω
|∇φx|+ sup

Ω
|∇u| sup

Ω
|φx|

)
εn−1 → 0.

Using these estimates together with (1.10) we may conclude, after sending
ε→ 0, that

u(x) =

∫
Ω

G(x, ξ)f(ξ)dξ +

∫
∂Ω

(
g(ξ)

∂G(x, ξ)

∂ν

)
dA∂Ω(ξ),

this finishes the proof of the Theorem.
Remarks: 1. Notice that (1.9) makes perfectly good sense even if we do

not know that we have a solution. A good guess (which is indeed true) is that
if we define u according to (1.9) then u solves the Dirichlet problem (1.1). To
actually prove this will require some extra work.

2) In some sense we hide the difficulties in this Theorem. In particular we
assume that we can solve (1.8) in order to define the Green’s function. But to
solve the Dirichlet problem is exactly what we are aiming to do. So we assume
that we have a solution to one Dirichlet problem, namely (1.8), in order to find
a representation for the solution to another Dirichlet problem (1.1).

The Theorem is however useful since the Dirichlet problem (1.8) has f = 0
and very special boundary data. So Theorem 1 states that if we can calculate
a solution to the Dirichlet problem with simple boundary data (1.8) in Ω then
we can find a representation for the solution to the Dirichlet problem in Ω with
any boundary data g ∈ C(∂Ω).

Our next goal will be to actually solve the Dirichlet problem (1.8) in some
simple domains Ω.

1.3 The Dirichlet Problem in Rn
+.

As pointed out in the last section, if we know that we have a solution u to the
Dirichlet problem in Ω, it is enough to solve the Dirichlet problem

∆φx(ξ) = 0 in Ω
φx(ξ) = −N(ξ − x) on ∂Ω.

(1.11)
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for every x in order to find a representation formula for u.
If Ω is very complicated it will be very hard to find a solution to (1.11). But

if Ω has some simple symmetries it is indeed possible to explicitly write down the
solutions to (1.11). In this section we will consider Ω = Rn+ = {x ∈ Rn; xn > 0}.

We need to find a φx(ξ) solving

∆φx(ξ) = 0 in Rn+
φx(ξ) = N(ξ − x) on ∂Rn+ = {ξ ∈ Rn; ξn = 0}.

Notice that

∆N(ξ − x) = 0 in Rn− = {ξ ∈ Rn; ξn < 0}
N(ξ − x) = N(ξ − x) on ∂Rn− = ∂Rn+ = {ξ ∈ Rn; ξn = 0}.

So N(yξ − x) is a solution, but in the wrong half space! This is however very
easy to fix by a simple reflection. We define

φx(ξ) = N(ξ − x̃) (1.12)

where x̃ = (x1, x2, ..., xn−1,−xn). Then we have, for ξ ∈ ∂Rn+ that is ξn = 0,

φx(ξ) = − 1

(n− 2)

1

|ξ − x|n−2
= − 1

(n− 2)

1

(|ξ′ − x′|2 + |xn|2)
n−2
2

= N(ξ − x),

where we have used the notation x′ = (x1, x2, ..., xn−1, 0) and ξ′ = (ξ1, ξ2, ..., ξn−1, 0).
We also assumed that n ≥ 3 for simplicity. The calculations for n = 2 is very
similar.

We have thus proved the following Lemma.

Lemma 1. The Green’s function in Rn+ is

G(x, ξ) = N(ξ − x)−N(ξ − x̃)

where x̃ = (x1, x2, ..., xn−1,−xn).

1.3.1 The Poisson Kernel in Rn
+.

We know that if we have a solution to the Dirichlet problem

∆u(x) = f(x) in Ω
u(x) = g(x) on ∂Ω.

then we can represent the solution by the formula

u(x) =

∫
Ω

G(x, ξ)∆u(ξ)dξ +

∫
∂Ω

(
u(ξ)

∂G(x, ξ)

∂ν

)
dA∂Ω(ξ),

if Ω is C1 and bounded and the Green’s function G(x, ξ) exists and is C1(Ω) ∩
C2(Ω).
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If f = 0 this reduces to

u(x) =

∫
∂Ω

(
u(ξ)

∂G(x, ξ)

∂ν

)
dA∂Ω(ξ).

This representation formula indicates that ∂G(x,ξ)
∂ν is of special importance. We

make the following definition.

Definition 2. Let Ω be a domain and G(x, ξ) be the corresponding Green’s
function. Call assume that the normal derivative of G(x, ξ) exists on ∂Ω and
callit

K(x, ξ) =
∂G(x, ξ)

∂ν

the Poisson Kernel for Ω and the representation formula

u(x) =

∫
∂Ω

(
u(ξ)

∂G(x, ξ)

∂ν

)
dA∂Ω(ξ)

we call the Poisson formula.

Since we know the Green’s function in Rn+ we are able to calculate the Poisson
kernel for Rn+.

Lemma 2. The Poisson kernel for Rn+ is

K(x, ξ) =
xn
ωn

1

|x− ξ|n
.

Proof: The Poisson kernel is by definition

∂G(x, ξ)

∂ν
.

The normal of Rn+ is −en so the Poisson kernel is

K(x, ξ) = −∂G(x, ξ)

∂ξn

and

G(x, ξ) = N(ξ − x)−N(ξ − x̃).

The Lemma follows by a simple calculation.

Lemma 3. For every xn > 0 we have∫
Rn−1

K(x, ξ′)dξ′ = 1,

where y′ = (ξ1, ξ2, ..., ξn−1, 0) and dξ′ = dξ1dξ2...dξn−1.
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Proof: In order to evaluate the integral of the Poisson kernel we will resort
to a trick. I am not particularly fond of tricks in mathematics but in this case
it will save us some calculation (which I do not like any more than tricks).

First we notice that by translating ξ′ → z + x′ we get∫
Rn

xn
|ξ′ − x|n

dξ′ =

∫
Rn

xn
|z′ − xnen|n

dz′ =

∫
Rn

xn
|ξ′ − xnen|n

dξ′

so we might assume that x′ = (0, 0, ..., 0) without changing the value of the
integral.

Secondly, we notice that if we change variables ξ′ → sz′ for any s > 0 then
we get ∫

Rn

xn
|ξ′ − x|n

dy′ =

∫
Rn−1

sn−1xn
|sz′ − x|n

dz′
∫
Rn

xn
s∣∣z′ − x
s

∣∣n dz′
which implies that the value of the integral of the Poisson kernel is independent
of xn > 0. So there is a constant cn such that

cn =

∫
Rn

xn
|ξ′ − x|n

dξ′,

where cn is independent of x as long as xn > 0.
The difficult part is to evaluate∫

Rn−1

xn
|ξ′ − x|n

dξ′ =

∫
Rn−1

xn

(|ξ′|2 + |xn|2)
n/2

dξ′ = cn. (1.13)

In order to evaluate (1.13) we notice that∫ ∞
0

1

1 + x2
n

(∫
Rn−1

xn

(|ξ′|2 + x2
n)
n/2

dξ′

)
dxn (1.14)

= cn

∫ ∞
0

1

1 + x2
n

dxn = cn (arctan(∞)− arctan(0)) =
cnπ

2
.

We may also evaluate (1.14)∫ ∞
0

1

1 + x2
n

(∫
Rn−1

xn

(|ξ′|2 + x2
n)
n/2

dξ′

)
dxn =

=

∫ ∞
0

∫
Rn−1

+

1

1 + x2
n

xn

(|ξ′|2 + x2
n)
n/2

dξ′dxn,

changing to polar coordinates xn = r cos(ψ)r, r2 = |ξ′|2 + x2
n we may continue

the equality,

=

∫ ∞
0

∫
∂B+

1 (0)

r cos(ψ)

1 + r2 cos2(ψ)

1

rn
rn−1dA∂B+

1 (0)dr =
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=

∫
∂B+

1 (0)

∫ ∞
0

cos(ψ)

1 + r2 cos2(ψ)
dA∂Br(0)dr =

∫
∂B+

1 (0)

π

2
dA∂B+

1
=
πΩn

2
, (1.15)

where we again used that
∫

a
1+a2x2 = arctan(ax) and that r cos(ψ) → ∞ as

r →∞.
Comparing (1.15) and (1.14) we see that cn = ωn this implies that∫

Rn−1

K(x, ξ′)dy′ =
cn
ωn

= 1.

The next Theorem establishes that we may indeed use the Poisson kernel to
calculate a solution to the Dirichlet problem in Rn+.

Theorem 2. Let g ∈ Cc(∂Rn+) and define

u(x) =

∫
Rn−1

xn
ωn

g(ξ′)

|x− ξ′|n
dξ′ (1.16)

where ξ′ = (ξ1, ξ2, ..., ξn−1, 0) and dξ′ = dξ1dξ2...dξn−1. Then

∆u(x) = 0 in Rn+
limxn→0+ u(x′, xn) = g(x′) uniformly on compact sets x′ ∈ K ⊂⊂ Rn−1.

(1.17)

Remark: There is a slight abuse of notation in this Theorem. We use the
notation ξ′ = (ξ1, ξ2, ..., ξn−1, 0) as a vector in Rn with zero as its last compo-
nent. But we also use ξ′ = (ξ1, ξ2, ..., ξn−1) ∈ Rn−1 without the zero in the
n :th component when we write g(ξ′). It should be clear from context which
convention we are using.

Proof: We will do the proof into two steps.
Step 1: The function u defined in (1.16) is well defined and is harmonic in

Rn+.
That the function is well defined and that we may differentiate under the

integral sign is clear since the integrand has compact support in ξ′ and is C∞ in
x for each x ∈ Rn+. To show that ∆u(x) = 0 follows from a simple calculation.

Step 2: Showing that limxn→0+ u(x′, xn) = g(x′) uniformly on compact
sets.

To show that limxn→0+ u(x′, xn) = g(x′) uniformly on compact sets we notice
that since g ∈ C(Rn−1) it follows that g is uniformly continuous on compact
sets K ⊂⊂ Rn−1. Fix a compact set K ⊂⊂ Rn−1. For technical reasons that
will become clear later we will define

K1 = ∪x∈KB1(x),

that is K1 is the closed set containing all points that are at a distance at most
one from K. Since K is compact it is closed and bounded which implies that K1
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is closed and bounded and thus compact. Therefore g is uniformly continuous
on K1.

In particular for every ε > 0 we have a δε/2 > 0, which we may assume to
satisfy δε/2 < 1, such that

|g(x′)− g(ξ′)| < ε

2
(1.18)

for every x′ ∈ K such that |x′ − ξ′| < δε/2. Here we use that g is uniformly
continuous on K1, notice that if x′ ∈ K and |x′−ξ′| < δε/2 < 1 then x′, ξ′ ∈ K1

and we may use the same δε/2 for all x′ ∈ K.
Using that

∫
Rn−1 K(x, ξ′)dy = 1 (Lemma 3) we see that for any x′ ∈ K

|u(x′, xn)− g(x′)| =
∣∣∣∣∫

Rn−1

xn
ωn

g(ξ′)− g(x′)

|x− ξ′|n
dy′
∣∣∣∣ ≤

≤

∣∣∣∣∣
∫
Rn−1\Bδε/2 (x′)

xn
ωn

g(ξ′)− g(x′)

|x− ξ′|n
dy′

∣∣∣∣∣+

∣∣∣∣∣
∫
Bδε/2 (x′)

xn
ωn

g(ξ′)− g(x′)

|x− ξ′|n
dξ′

∣∣∣∣∣ =

(1.19)
= Iε/2 + Jε/2

It is easy to see that

Jε/2 ≤
∫
Bδε/2 (x′)

xn
ωn

|g(ξ′)− g(x′)|
|x− ξ′|n

dξ′ <
ε

2

∫
Bδε/2 (x′)

xn
ωn

1

|x− ξ′|n
dξ′ <

ε

2

(1.20)
since

∫
Rn−1 K(x, ξ′)dy = 1, |g(ξ′)−g(x′)| < ε for all ξ′ ∈ Bδε(x′) andK(x, ξ) > 0.

Noticew that the estimate (1.20) is independent of xn > 0.
Also, if we chose R so large that g(ξ′) = 0 outside of BR(x′) for all x′ ∈ K,

∣∣Iε/2∣∣ =

∣∣∣∣∣
∫
Rn−1\Bδε/2

xn
ωn

g(ξ′)− g(x′)

|x− ξ′|n
dξ′

∣∣∣∣∣ ≤
≤ sup
ξ′∈Rn−1, x′∈K

|g(ξ′)− g(x′)|

∣∣∣∣∣
∫
BR(0)\Bδε/2 (x′)

xn
ωn

1

|x− ξ′|n
dξ′

∣∣∣∣∣ ≤ (1.21)

≤
2xn supy∈Rn−1 |g(y)|

ωn

∣∣∣∣∣
∫
BR(0)\Bδε/2 (x′)

1

δnε/2
dξ′

∣∣∣∣∣ ≤
≤

(
2 supy∈Rn−1 |g(y)|Rn

nδnε/2

)
xn.

From (1.21) it follows that
∣∣Iε/2∣∣ < ε

2 if xn < δ̃ε where

δ̃ε =
nδnε/2

4 supy∈Rn−1 |g(y)|Rn
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only depend on g and the dimension.1

Putting (1.19), (1.20) and (1.21) together we have shown that for each com-
pact set K and each ε > 0 there is a δ̃ε such that for each x′ ∈ K

|u(x′, xn)− g(x′)| < ε for all xn < δ̃ε.

It follows that
lim

xn→0+
u(x′, xn) = g(x′)

uniformly on compact sets.

Corollary 1. Theorem 2 is still true under the assumption that g(ξ′) is con-
tinuous and bounded.

Sketch of the Proof: The proof of the corollary is almost the same as the proof
of the Theorem. We only need to make sure that the integrals are convergent.
We will show that the integral in (1.16) is convergent and leave the rest of the
details to the reader.

Notice that u(x) is still well defined if g(ξ) is bounded and integrable. In
particular, under those assumptions there exists a constant C, depending only
on xn, supRn−1 |g(ξ′)| and the dimension such that∣∣∣∣xnωn g(ξ′)

|x− ξ′|n

∣∣∣∣ ≤ C in B1(x′),

and ∣∣∣∣xnωn g(ξ′)

|x− ξ′|n

∣∣∣∣ ≤ C

|x′ − ξ′|n
in Rn−1 \B1(x′),

it follows that the integral (1.16) is convergent under the assumptions in the
Corollary, see exercise 2C in the previous set of lecture notes.

Notice that we can now solve the Dirichlet problem in R+
+. In particular if

f ∈ Cαc (Rn) and g ∈ Cc(Rn−1) then

u1(x) =

∫
Rn
N(x− ξ)f(ξ)dξ

solves
∆u1(x) = f(x) in Rn

and

u2(x) =

∫
Rn−1

xn
ωn

g(ξ′)− u1(ξ′)

|x− ξ′|n
dy′

solves
∆u2(x) = 0 in Rn+
u2(x′, 0) = g(x′)− u1(x′, 0) on ∂Rn−1,

1In particular, δ̃ε only depend on g through sup |g|, the support of g and the continuity
properties of g, that is on δε/2.
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where the second identity is interpreted in the sense of limits as in Theorem 2.
In particular u(x) = u1(x) + u2(x) will solve

∆u(x) = f(x) in Rn+
u(x′, 0) = g(x′) on ∂Rn−1,

that is we now know how to solve the Dirichlet problem in Rn+.
In Theorem 1 we made an assumption that Ω was bounded. Obviously Rn+

is not a bounded set so we can not apply Theorem 1 to Rn+. We can however,
Theorem 2, construct a solution in Rn+.

The difference between Theorem 1 and Theorem 2 is that in Theorem 1 we
assume that we have a solution and we find a representation formula for that
solution. In Theorem 2 we do not assume that we have a solution - we prove
that we have a solution.

However to state that the solution we construct in Theorem 2 is the same as
the any given solution we would have to know that the solutions are unique. In
bounded domains Ω it is indeed the case that solutions that are C2(Ω) ∩ C(Ω)
are unique, a fact that we will prove later. In unbounded domains, in particular
in Rn+, the solutions are not uniquely determined by the boundary data. A
simple example is that u(x) = axn is a solution to

∆u(x) = 0 in Rn+
u(x′, 0) = 0 for every x′ ∈ Rn−1.

(1.22)

for any a ∈ R. Clearly the Dirichlet problem (1.22) does not admit a unique
solution.

Before we end our discussion about the Dirichlet problem in Rn+ we should
mention something about the conclusion in Theorem 2 that limxn→0+ u(x′, xn) =
g(x′) uniformly on compact sets. We start by an example.

Example: There are infinitely many solutions to the following Dirichlet
problem in Rn+:

∆u(x) = 0 in Rn−1

limxn→0+ u(x′, xn) = 0 for all x′ ∈ Rn−1 limx→∞,xn>0 u(x) = 0.
(1.23)

Only one of these solutions, the trivial solution u(x) = 0, is bounded.
To see that there are infinitively many solutions we just notice that for each

a ∈ R and i = 1, 2, ..., n− 1 the function

ua(x) = a
xixn
|x|n+2

solves (1.23). In particular, ua is just a constant multiple of the derivative of the

Poisson kernel ∂K(x,0)
∂xi

which is harmonic in Rn+. That limx→∞,xn>0 u(x) = 0
follows easily from |ua(x)| ≤ a

|x|n → 0 as |x| → ∞. The proof that u(x′, xn)→ 0

as xn → 0+ splits up into two cases. If |x′| = δ 6= 0 then |ua(x)| ≤ axn
|δ|n+1 → 0

as xn → 0+ and if |x′| = 0 then xi = 0 and thus ua(x) = 0.
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Clearly, if a 6= 0 then the limit limxn→0+ ua(x′, xn) = 0 is not uniform since
ua is not bounded close to x = 0.

We have not developed enough theory, yet, to show that u(x) = 0 is the only
bounded solution. But we will in the next few weeks.

This example shows that the solution defined in Theorem 2 is a particularly
good solution. And that we have to be very careful when we investigate unique-
ness properties of the solutions. In general, it is not enough that the boundary
values are obtained in a limit sense for the solution to be unique. That is we
need the solution to the Dirichlet problem in Ω is continuous up to the boundary
for the solution to be unique.

1.4 The Green’s function in Br.

In this section we will repeat the analysis in the previous section for the domain
Ω = Br(0). We will leave some calculations for the reader.

For every x ∈ Br(0) we need to find a solution to

∆φx(ξ) = 0 in Br(0)
φx(ξ) = N(ξ − x) on ∂Br(0).

As before we want to use the particular symmetry of the domain to explicitly
calculate φx. To do that we need the following definition and Lemma.

Definition 3. For any x ∈ Rn we denote

x∗ =
r2x

|x|2
if |x| 6= 0.

We say that x∗ is the reflection of x in ∂Br(0). And if u a function defined in
Ω then we say that

u∗(x) =
rn−2

|x|n−2
u(x∗) for x∗ ∈ Ω

is the Kelvin transform of u.

Lemma 4. The ∗ operator maps the ball Br(0) onto Rn \Br(0):

{x∗; x ∈ Br(0) \ {0}} = Rn \Br(0).

Furthermore (x∗)∗ = x for all x 6= 0.

Proof: Clearly if |x| < r then

|x∗| =
∣∣∣∣ r2

|x|

∣∣∣∣ > r.
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Also

(x∗)∗ =

(
r2x

|x|2

)∗
=
r2 r2x
|x|2

r4 |x|2
|x|4

= x.

Lemma 5. Assume that u∗ is harmonic on Ω. Then u∗ is harmonic on

Ω∗ = {x; x∗ ∈ Ω}.

Proof: The proof is a straightforward, although rather tedious, calculation

∆u∗(x) = ∆

(
rn−2

|x|n−2
u

(
r2x

|x|2

))
= 0.

Next we notice that for x ∈ Br(0) we have that N(ξ − x) is harmonic in
both x and ξ for x 6= ξ. We want to do the Kelvin transform of N(y − x) with
respect to x ∈ Br(0). That is

N∗(ξ − x) =

{
− rn−2

|x|n−2
1

(n−2)ωn
1

|ξ−x∗|n−2 = − rn−2

(n−2)ωn
1

(|x||x∗−ξ|)n−2 if x 6= 0

− 1
(n−2)ωn

if x = 0,

when n > 2.
By Lemma 5 that ∆ξN

∗(ξ − x) = 0 whenever ξ 6= x∗. In particular, since
x ∈ Br(0) so x∗ /∈ Br(0), we have that for every ξ ∈ Br(0) x∗ 6= xi and thus
∆ξN

∗(ξ − x) = 0.
We have that if ξ ∈ ∂Br(0) then

N∗(ξ − x) = − 1

(n− 2)ωn

rn−2

(|x|2|x∗ − ξ|2)
(n−2)/2

=

= − 1

(n− 2)ωn

rn−2(∣∣∣ r2x|x| − ξ|x|∣∣∣2)(n−2)/2
= (1.24)

= − 1

(n− 2)ωn

rn−2

(r4 + 2r2x · ξ + r2|x|2)
(n−2)/2

,

where we used that |ξ|2 = r2 since ξ ∈ ∂Br(0). Again using that |ξ|2 = r2 we
deduce that r4 + 2r2x · ξ + r2|x|2 = r2|ξ − x|2. So we may write (1.24) as

N∗(ξ − x) = − 1

(n− 2)ωn

1

|ξ − x|n−2
= N(ξ − x)

for all ξ ∈ ∂Br(0). In particular N∗(ξ − x) satisfies the criteria of being the
corrector φx(ξ) in the definition of the Green’s function. All these calculations
also works for n = 2. We have thus proved the following Lemma
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Lemma 6. The Green’s function for Br(0) is

G(x, ξ) = N(ξ − x)−N∗ (ξ − x) ,

where

N∗(ξ − x) =

{
− 1

(n−2)ωn
rn−2

(|x||x∗−ξ|)n−2 if x 6= 0

− 1
(n−2)ωn

if x = 0,

when n > 2 and

N∗(ξ − x) =

{
− 1

2π

(
ln (|ξ − x∗|)− ln(r2)

)
= if x 6= 0

− 1
2π if x = 0,

when n = 2.

When we know the Green’s function we can calculate the Poisson kernel for
the ball.

Lemma 7. The Poisson kernel for the ball Br(0) is

K(x, ξ) =
r2 − |x|2

ωnr

1

|x− ξ|n
.

Proof: The proof is a simple calculation. We know, for n > 2, that

G(x, ξ) = N(ξ − x)−N∗ (ξ − x) =

− 1

(n− 2)ωn

1

|x− ξ|n−2
+

rn−2

(n− 2)ωn

1

(|x| |x̃− ξ|)n−2 .

The outward normal of Br(0) is ν = ξ
|ξ| = ξ

r which implies that for |ξ| = r we

have

K(x, ξ) =
ξ

r
· ∇ξG(x, ξ) =

n∑
j=1

ξj
r

(
1

ωn

xj − ξj
|x− ξ|n

− rn

ωn

xj − |x|2ξj
(|x||x̃− ξ)|)n

)
=

=
ξ

r
· ∇ξG(x, ξ) =

n∑
j=1

ξj
r

(
1

ωn

xj − ξj
|x− ξ|n

− 1

ωn

xj − |x|2ξj
(|x− ξ)|)n

)
(1.25)

where we used the same argument as in and the lines following (1.24). Simpli-
fying (1.25) we get

K(x, ξ) =
r2 − |x|2

ωnr

1

|x− ξ|n
.

Continuing as we did with the Poisson’s equation in Rn+ we need the following
Lemma.
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Lemma 8. Let K(x, ξ) be the Poisson kernel for a Br(0) then for each x ∈
Br(0) ∫

∂Br(0)

K(x, ξ)dA∂Br(0)(ξ) = 1.

Proof: We know, Theorem 1, that if ∆u(x) = 0 in Br(0) and u(x) = g(x)
on ∂Br(0) then

u(x) =

∫
∂Ω

(
g(ξ)

∂G(x, ξ)

∂ν

)
dA∂Ω(ξ) = (1.26)

=

∫
∂Ω

g(ξ)K(x, ξ)dA∂Ω(ξ),

where we also used the definition of K(x, ξ) in the last equality.
Clearly u(x) = 1 is a C2 solution to the Dirichlet problem with g(x) = 1.

Inserting this in (1.26) gives the lemma.
We are now ready to state the main Theorem of this section. The proof is

parallel to the proof of Theorem (2) and left to the reader (see the exercises).

Theorem 3. Let g ∈ C(∂Br(0)) and define

u(x) =

∫
∂Br(0)

r2 − |x|2

ωnr

1

|x− y|n
g(y)dA∂Br(0)(y). (1.27)

Then u ∈ C2(Br0) and

∆u(x) = 0 in Br(0)
lims→1− u(sx) = g(x) uniformly for every x ∈ ∂Br(0).

(1.28)

Notice that the second line in (1.28) only says that u satisfies the boundary
conditions in some sense.

1.5 Exercises:

Exercise 1: Let K((ξ, x) be the Poisson kernel for the half space Rn+. Prove
that ∆xK(ξ, x) = 0 for all ξ ∈ ∂Rn+. Conclude that an integral of the kind∫
Rn−1 K(x, ξ′)g(ξ′)dξ′ is nothing more that a summation of harmonic functions
K(x, ·).

Exercise 2: Verify that v(x) = xn is a solution to

∆u(x) = 0 in Rn+
u(x) = 0 on ∂Rn+.

Define u(x) as in Theorem 2 and verify that u(x) + av(x) is a solution to (1.17)
for any a ∈ R.

Draw the conclusion that the solution to (1.17) are not unique.

Exercise 3: We say that the functions Kε(x, ξ) defined for every ε > 0 and
x, ξ ∈ Rn is a family of “Good Kernels” if
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1. For every ε > 0 and every x ∈ Rn the function Kε(x, ξ) is integrable in ξ
and ∫

Rn
Kε(x, ξ)dξ = 1.

2. For every ε > 0 and x ∈ Rn there is a constant C that is independent of
ε such that ∫

Rn
|Kε(x, ξ)| dξ ≤ C.

3. For every, δ > 0, and every x ∈ Rn∫
Rn\Bδ(x)

|F (x, ξ)|dξ → 0 as ε→ 0.

A: Prove the Poisson kernel K(x, ξ′) for Rn+ is a family of “Good Kernels”

on Rn−1 if we interpret K(x, ξ′) = K̃xn(x′, ξ′) with xn > 0 playing the role of ε.

B: Prove that if Fε(x, ξ) is a family of “Good Kernels”, g is continuous and
bounded on Rn and

uε(x) =

∫
Rn
Kε(x, ξ)g(ξ)dξ.

Then limε→0+ u(x) = g(x).

Hint: Look at step 2 in the proof of Theorem 2. As a matter of fact, my
main reason for putting this exercise here is to force you to think through that
proof.

C: Can you formulate what it would mean for Kε(x, ξ) to be a family of
“Good Kernels” on the unit sphere ∂B1(0)? Use this to prove Theorem 3.

Exercise 4: Assume that u(x) ∈ C2
loc(D) and that ∆u(x) = 0 in D. Assume

furthermore that Br(x
0) ⊂ D is any ball. Prove that

u(x0) =
1

ωnrn−1

∫
∂Br(x0)

u(x)dA∂Br(x0)(x).

This is known as “The mean value property for harmonic functions” since it
states that if u(x) is harmonic in a domain then u(x0) is equal to the mean
value of u on the boundary of any ball with center at x0.

Hint: Can you use Theorem 3?

Exercise 5: Show that if u, v ∈ C2(Br(0)) ∩ C1(B1(0)) both solve the
Dirichlet problem

∆w(x) = 0 in B1(0)
w(x) = g(x) on ∂B1(0)

then u(x) = v(x) for all x ∈ B1(0). This shows that C2(Br(0)) ∩ C1(B1(0))
solutions to the Dirichlet problem in B1(0) are unique.

Hint: Representation formulas are great! They tell us exactly what the
solutions to the problem are.
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Exercise 6: Derive a representation formula for the solutions to the follow-
ing Dirichlet problem

∆u(x) = 0 in B+
1 (0) = {x ∈ B1(0); xn > 0}

u(x) = f(x) for x ∈ (∂B1(0))
+

= {x ∈ ∂B1(0); xn > 0}
u(x) = g(x) for x ∈ B1(0) ∩ {x; xn = 0}

Where f(x) and g(x) are given functions.

Hint: First prove that if we define the function f̂ on ∂B1(0) according to

f̂(x) =

{
f(x) for x ∈ (∂B1(0))

+

−f(x′,−xn) for x ∈ (∂B1(0))
−
.

Then the solution, v(x), to the Dirichlet problem in B1(0) that satisfies u(x) =

f̂(x) on ∂B1(0) also satisfies v(x′, 0) = 0. Use this together with Theorem 2 to
get your representation formula - it doesn’t have to be pretty.


