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Chapter 1

An interlude on the Path
we will take - why go
abstract?

So far we have been able to prove that for any f ∈ Cαc (Rn) we can solve
∆u(x) = f(x) in Rn. Also, by using very similar ideas, we where able to solve
the simple Dirichlet problems

∆u(x) = f(x) in D
u(x) = g(x) on ∂D

(1.1)

for the simple domains D = Rn+ and D = Br(0). With a little bit of work
we could also, Exercise 6 from last installment of the lecture notes, solve the
Dirichlet problem for the simple domain D = B+

1 (0).
However, in many applications we would like to solve a PDE on a very

complicated domain. For instance, if we want to solve a problem involving
turbulence we might want to solve a PDE describing the motion of air in a
domain D that consists of R3 minus the shape of an airplane.

The method of solving a PDE by means of a Green’s function involves finding
the functions φx(y), that is solving the Dirichlet problem with boundary data
N(x − y), which we could only do for very simple domains. Even for fairly
simple domains such as the one consisting of three overlapping circles in figure
1 we do not know how to calculate φx(y) - and thus not how to calculate the
Green’s function. We need to move into the abstract theory and give up any
hope of finding explicit representation formulas.

Since the only way we know (at least from this course) to solve PDE in a
domain is by means of a Green’s function that is the only thing we can use
in solving the Dirichlet problem for a more complicated domain, such as the
domain consisting of three circles.

So let us try to hammer out an approach on how to solve (1.1) for D =“the
union of three circles A1, A2 and A3” and f(x) = 0. We may use the Green’s
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Figure 1.1: Domain consisting of Three Circles.

function to find a solution, lets call it u1(x), to the Dirichlet problem in A1

with boundary data g(x) on the part of ∂A1 where g(x) is defined and 0 on the
other part of ∂A1. If we let v1 be the function u1 extended by 0 to the rest of
D we have created a function v1 that is harmonic in D \ (∂A ∩D).

We may continue and use the Green’s function to find a harmonic function,
lets call it u2(x), in A2 with boundary data g(x) on the part of ∂A2 where g(x)
is defined and u1(x) on the other part of ∂A2 ∩D and boundary data equal to
zero on the rest of ∂A1 ∩D. We may define

v2(x) =

{
v1(x) in D \A2

u2(x) in A2.

Inductively we may create sequences uk(x) and vk(x) such that for any
l = 0, 1, 2, 3, ... and j ∈ {1, 2, 3} the function u3l+j solves the Dirichlet problem
in Aj :

1

∆u3l+j(x) = 0 in Aj

u3l+j(x) = g(x) on ∂Aj \ ∂D
u3l+j(x) = v3l+j−1(x) on ∂Aj ∪D

(1.2)

and

v3l+j =

{
v3l+j−1(x) in D \Aj

u3l+j(x) in Aj .

Notice that v3l+j(x) is then harmonic in Aj and that v3l+j = g(x) on ∂D
for every l ≥ 1 and j = 1, 2, 3. So if limk→∞ vk(x) converges to some function
u(x) then u(x) = liml→∞ v3l+j(x) in Aj for j = 1, 2, 3. That is u(x) would be
the limit of a sequence of harmonic functions in Aj for j = 1, 2, 3.

This leads to two questions:

1. Can we show that limk→∞ vk(x) exists?

2. Is harmonicity preserved under limits? That is, if a sequence of harmonic
functions v3l+j(x)→ u(x) as l→∞ will it follow that u(x) is harmonic?

1Since Aj is a ball we have no difficulties to solve this Dirichlet problem by means of a
Green’s function.
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Figure 1.2: An open Domain covered by Balls.

If the answer to both these questions are affirmative then we know how to
construct a solution to the Dirichlet problem, even though we don’t have an
explicit solution formula.

Before we try to make a brief outline of the theory that lies ahead. We will
indicate that the three balls domain described above isn’t as special as it looks.
We could have used the same approach for a domain consisting of four, five on
N balls. And if we can solve the Dirichlet problem for a domain that is the
union of a finite number of balls then we should be able to use some analysis
to to solve the Dirichlet problem for any domain that is the union of an infinite
number of balls. Observe that any open domain is the union of all the balls in
its interior.

So let us briefly indicate how we could attack the Dirichlet problem for a
general domain D using the strategy used for the domain consisting of three
balls. The natural way to approach this problem would be to we start with
a function v0(x) defined on that domain with boundary data g(x). Then we
define a new function

vk(x) =

{
uk(x) in Br(x

0) ⊂ D
vk−1(x) in D \Br(x0)

(1.3)

for some ball Br(x
0) ⊂ D and uk being a harmonic function, constructed by

means of a Green’s function, in Br(x
0) with boundary data vk−1(x). This

way we can construct a sequence vk(x) that hopefully converge to a harmonic
function.

The problem with this approach in a general domain is that the choice
of the ball Br(x

0) was a quite arbitrary choice among infinitively many balls
Br(x

0) ⊂ D. With this arbitrariness we can not expect that vk(x) converges to
a unique solution.2 So we can not rely on an arbitrary choice of the ball Br(x

0).
Before we explain how to get rid of the problem with the arbitrary choice

of the ball Br(x
0) in (1.3) let us say something brief about the convergence of

2If we choose the ball Br/2k (x0) in the construction of vk(x) then every function vk(x)

would equal v0 in D \Br(0) so unless our starting function was harmonic in D \Br(x0) there
is no chance that the limit would be harmonic in D.
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vk(x). There are many ways to prove convergence of sequences of functions,
but one of the simplest ways to assure convergence is to have a bounded and
monotone sequence. So if, for every k = 1, 2, 3, ..., vk−1(x) had the property
that vk(x) ≥ vk−1(x) then the convergence of the sequence vk(x) would be easy.

If we could identify some functions S that has the property that if vk−1(x) ∈
S then vk(x) defined as in (1.3) would satisfy vk(x) ≥ vk−1(x) and vk(x) ∈ S for
any ball Br(x

0) ⊂ D then it would follow that v0(x) ≤ v1(x) ≤ ... ≤ vk(x) ≤ ....
So if vk(x) would be bounded then it would be pointwise convergent to some
function u(x).

But if every function in S is bounded then we could define

u(x) = sup
v∈S

v(x) = sup
v∈S

ṽ(x) (1.4)

where

ṽ(x) =

{
w(x) in Br(x

0) ⊂ D
v(x) in D \Br(x0)

(1.5)

where w is harmonic in Br(x
0) and equal to v on ∂Br(x

0). That (1.4) holds,
for any ball Br(x

0) ⊂ D, would follow from v ≤ ṽ ∈ S if v ∈ S.
Notice that by considering the supremum over S we no longer make any

choice of Br(x
0). The supremum assures that we take all balls Br(x

0) ⊂ D into
consideration simultaneously.

So the strategy to show existence of solutions in a general domain would
involve:

1. To identify a class S such that if v ∈ S then v(x) ≤ ṽ(x) and ṽ ∈ S
where ṽ(x) is defined by (1.5). The class S will be all the sub-harmonic
functions.

2. Since we will be taking a supremum over S we will have to understand the
limit properties3 of harmonic functions. In particular, we have to prove
that if ṽk is harmonic in Br(x

0) and ṽk → u in Br(x
0) will u be harmonic?

Step 1 of the strategy: We would like to define S so that v ∈ S implies
v ≤ ṽ for any ball Br(x

0). It is easy to find such a condition on S. In particular,
if v(x) > ṽ(x) for some point in x ∈ Br(x0) then, since v = ṽ on ∂Br(x

0), the
function v(x)− ṽ(x) has a strictly positive maximum at some point x̂ ∈ Br(x0).

At x̂ we have, by first year calculus, that ∂2v(x̂)−ṽ(x̂)
∂x2
i

≤ 0. Summing from

i = 1, ..., n we deduce that 0 ≥ ∆(v(x̂) − ṽ(x̂)) = ∆v(x̂). This implies that if
∆v(x) ≥ 0 then there are no x ∈ Br(x

0) such that v(x) > ṽ(x). So we are
tempted to define the class S to be the class of all functions v(x) such that
∆v(x) ≥ 0.

But the other condition we impose on S is that ṽ ∈ S. For us to state that
∆ṽ ≥ 0 we need to know that ṽ ∈ C2(D). But even if v(x) ∈ C2(D) it will

3In taking the supremum we may consider a sequence vk ∈ S such that vk(x) →
supv∈S v(x). So taking the supremum and a limit are more or less equivalent.
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not follow that ṽ is C2, or even differentiable, on ∂Br(x
0).4 We will therefore

have to find another way to define the class S without using derivatives. As a
matter of fact we will find a way to define harmonic functions without referring
to derivatives.

Step 2 of the strategy: Secondly we need to understand the convergence
properties of harmonic functions. To that end we can not use monotonicity but
we have to rely on compactness. We want to show that if ṽk(x) is a sequence of
harmonic, and thus C2, functions in Br(x

0) that converges to u(x) then u(x) is
harmonic. It is enough to show that the second derivatives of ṽk converges.

In general, by the Arzela-Ascoli Theorem, it is enough for a bounded se-
quence of continuous functions to be equicontinuous in order for a subsequence
to converge to a continuous function. Therefore we need to show that the sec-
ond derivatives of ṽk are equicontinuous. This leads us to one of the more
complicated aspects of the theory of partial differential equations: the regu-
larity theory. Regularity theory involves proving that the solutions to partial
differential equations are regular, that is have a certain number of derivatives
defined - preferably also being able to say that the derivatives are bounded in
terms of the given data.5

In this case we will prove that the third derivatives of ṽk are bounded uni-
formly which implies that the second derivatives are equicontinuous and thus
convergent.

Once we have understood sub-harmonic functions and the convergence prop-
erties of harmonic functions we will be able to prove existence of solutions for
general domains using the strategy outlined above - a method called Perron’s
method. That proof will be quite long and complicated.

When we consider the supv∈S v(x) we do not address the issue of the bound-
ary values. So we have to prove that our solution satisfy the boundary values6

in a separate Theorem.
When we solve the Dirichlet problem in a general domain D we can not hope

to find an explicit solution. Imagine how complicated such an explicit solution
would have to be, it would have to be a function from the set of domains D,
functions f and g and points x ∈ D to the value u(x) where ∆u(x) = f(x) in
D and u(x) = g(x) on ∂D. Just to find a reasonable way to define the space of
all domains D would be rather complicated. We have to move into an abstract
theory because the Dirichlet problem is very complicated and we have very few
tools.

4Take for instance v(x) = |x|2 − 1 and D = B1(0), then ∆v(x) = 2n ≥ 0 but if we use
x0 = 0 and r = 1

2
in the definition of ṽ(x) we will get

ṽ(x) =

{
− 3

4
in B1/2(0)

|x|2 − 1 in B1(0) \B1/2(0)

which is clearly not differentiable on ∂B1/2(0). However, as a distribution ∆ṽ is well defined
and ∆ṽ(x) ≥ 0. But we will not discuss the theory of distributions in this course.

5By data I mean the domain D, the right hand side f and the boundary data g.
6Or does it? Under what assumptions on the domain?
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Chapter 2

The Mean value Property.

If u ∈ C2(Br(0)) ∩ C(Br(0)) is given by the Poisson integral then

u(0) =

∫
∂Br(0)

K(x, y)u(y)dA∂Br(0)(y) =

∫
∂Br(0)

r2

ωnr

1

|y|n
u(y)dA∂Br(0)(y) =

(2.1)

=
1

ωnrn−1

∫
∂Br(0)

u(y)dA∂Br(0)(y),

where we have used that |y| = r on ∂Br(0). In particular, it follows that u(0)
equals the mean value of u(y) on the boundary of ∂Br(0). This is a very powerful
property and it is true for all harmonic functions.

Theorem 1. [The Mean Value Theorem.] Suppose that u ∈ C2(Ω)∩C(Ω)
is harmonic in the domain Ω and that Br(x

0) ⊂ Ω. Then

1.

u(x0) =
1

ωnrn−1

∫
∂Br(x0)

u(y)dA∂Br(x0)(y)

2. and

u(x0) =
n

ωnrn

∫
Br(x0)

u(y)dy.

Remark: The calculation in (2.1) constitutes a proof of the first statement.
We will however provide a different proof that directly uses that ∆u = 0. First of
all this proof is classical and should be included in the course. Secondly, we will
have reason to investigate the mean value property for solutions to ∆u(x) ≥ 0
and for those solutions the proof given here will be easier to utilize.

Proof: By translation invariance of the Laplace equation we may assume
that x0 = 0. That is the function ũ(x) = u(x + x0) is harmonic if u is. It is
therefore enough to prove the theorem for ũ(x) with x0 = 0. By this, there is
not loss of generality to assume that x0 = 0 from the start.

7
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Assuming that x0 = 0 and making a change of variables in the mean value
formula rz = y we see that, defining the function Ψ(r),

Ψ(r) =
1

ωnrn−1

∫
∂Br(0)

u(y)dA∂Br(x)(y) =
1

ωn

∫
∂B1(0)

u(rz)dA∂B1(0)(z).

Taking the derivative with respect to r we see that

Ψ′(r) =
1

ωn

∫
∂B1(0)

z · ∇u(rz)dA∂B1(0)(z) = (2.2)

=
1

ωn

∫
∂B1(0)

∂u(rz)

∂ν
dA∂B1(0)(z) =

1

ωn

∫
B1(0)

∆u(rz)dz = 0

since u is harmonic. We also used the divergence theorem in the second to last
equality. In particular Ψ(r) =constant= limr→0 Ψ(r). Since u ∈ C(Ω) we have

Ψ(r) = lim
r→0

Ψ(r) =
1

ωn

∫
∂B1(0)

lim
r→0

u(rz)dA∂B1(0)(z) =

=
1

ωn

∫
∂B1(0)

u(0)dA∂B1(0)(z) = u(0).

This proves the first version of the mean value Theorem.
To prove the second part of the mean value Theorem we use polar coordi-

nates.

n

ωnrn

∫
Br(x0)

u(y)dy =
1

nωnrn

∫ r

0

(∫
∂Bs(0)

u(y)dA∂Bs(0)(y)

)
ds.

Using the mean value Theorem on spheres we see that the integral in the brackets
can be evaluated ∫

∂Bs(0)

u(y)dA∂Bs(0)(y) = ωns
n−1u(0).

This implies that

n

ωnrn

∫
Br(x0)

u(y)dy =
n

ωnrn

∫ r

0

ωns
n−1u(0)ds = u(0).

This concludes the proof.
As a matter of fact the mean value property characterises harmonic functions

as the following Corollary shows.

Corollary 1. Assume that u ∈ C2(Ω) and that u satisfies the mean value
property in Ω. That is, for every ball Br(x0) ⊂ Ω the following equality holds

u(x0) =
1

ωnrn−1

∫
∂Br(x0)

u(y)dA∂Br(x0)(y). (2.3)

Then u is harmonic in Ω.
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Proof: We will argue by contradiction and assume that there exist an x0 ∈ Ω
such that ∆u(x0) 6= 0 and derive a contradiction. For definiteness we assume
that ∆u(x0) = δ > 0.

Since u ∈ C2(Ω) there exist an rδ < dist(x0, ∂Ω) such that

∣∣∆u(x0)−∆u(y)
∣∣ < δ

2

for all y such that |x0 − y| < rδ. In particular ∆u(y) > δ/2 in Brδ(x
0).

Define Ψ(r) according to

Ψ(r) =
1

ωnrn−1

∫
∂Br(x0)

u(y)dA∂Br(x0)(y).

That is, using the mean value property (2.3), Ψ(r) = u(x0). It follows, for
r < rδ and using the calculation in the proof of the mean value property,

0 = Ψ′(r) =
1

ωn

∫
B1(x9)

∆u(rz)dz >
1

ωn

∫
B1(x0)

r2 δ

2
dz > 0.

This is a contradiction. It follows that ∆u(x) = 0 in Ω.
Remark: Something important, but subtle, happens in this section. We

show that there is a property that is equivalent to ∆u(x) = 0 for C2 functions -
the mean value property. But the mean value property is in itself independent
of the function being C2. So could we define any function, regardless of whether
it is C2 or not, to be harmonic if it satisfies the mean value property? Indeed
we can, it even turns out as we will see later that the mean value property for
a function u implies that u ∈ C2. It is also through the mean value property
that we will be able to define something like ∆v(x) ≥ 0 without assuming that
v ∈ C2 which will be a crucial step in defining the class S of sub-harmonic
functions.
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Chapter 3

The maximum Principle.

From the mean value Theorem it follows that if u(x) is harmonic in a domain Ω
and if u(x) equals its supremum at a point x0 ∈ Ω then u must equal its supre-
mum in every ball contained in Ω with center at x0. It is a direct consequence
that only constant harmonic functions achieve their maximum in their domain
of harmonicity (if the domain is bounded and connected). The next Theorem
proves this.

Theorem 2. [The Strong Maximum Principle.] Suppose that u ∈ C2(Ω)∩
C(Ω) is harmonic in the bounded domain Ω. Then

sup
x∈Ω

u(x) = sup
x∈∂Ω

u(x).

Furthermore if Ω is also connected and there exist a point x0 ∈ Ω such that
u(x0) = supx∈Ω u(x) then u(x) is a constant.

Proof: Lets denote M = supx∈Ω u(x). Since u ∈ C(Ω) it follows that the set

ΩM = {x ∈ Ω; u(x) = M}

is a relatively closed set in Ω. Now assume that there is a point x0 ∈ Ω such
that u(x0) = M then for any r such that 0 < r < dist(x0, ∂Ω) we have by the
mean value property

M = u(x0) =
n

ωnrn

∫
Br(x0)

u(y)dy ≤ n

ωnrn

∫
Br(x0)

Mdy = M, (3.1)

where the inequality is an equality (which it obviously is) if and only if u(y) = M
for all y ∈ Br(x0). It follows that for any x ∈ ΩM there is a ball Br(x) ⊂ ΩM ,
that is ΩM is an open set in Ω. Since ΩM is both open and relatively closed in
Ω it follows that ΩM is either empty or a component of Ω.

If ΩM is the empty set it follows that the supremum of u is attained on the
boundary of Ω. If ΩM is a component of Ω it still follows that u(x) = M on the
boundary of that component of Ω.

11
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Finally, if Ω is connected and there exist an x0 ∈ Ω such that u(x0) = M
then it follows that ∅ 6= ΩM and therefore ΩM = Ω, that is u(x) = M in Ω.

Remark: If u(x) is harmonic so is −u(x). It is therefore an immediate
consequence of this theorem that if Ω is bounded and u is harmonic in Ω then

inf
x∈Ω

u(x) = inf
x∈∂Ω

u(x).

If Ω is also connected and if u attains its infimum at a point x0 ∈ Ω then u is
constant.

The maximum principle has many consequences, one of the most important
consequences is that it implies that solutions to the Dirichlet problem are unique.

Theorem 3. Let Ω be a bounded domain and suppose that u1, u2 ∈ C2(Ω)∩C(Ω)
be two solutions to

∆u(x) = f(x) in Ω
u(x) = g(x) on ∂Ω.

Then u1 = u2 in Ω.

Proof: Define v = u1 − u2 then

∆v(x) = 0 in Ω
v(x) = 0 on ∂Ω.

So by the maximum principle it follows that supx∈Ω v(x) ≤ supx∈∂Ω v(x) = 0.
Applying the maximum principle on −v(x) we see that

− inf
x∈Ω

v(x) = sup
x∈Ω

(−v(x)) ≤ sup
x∈∂Ω

(−v(x)) = 0.

It follows that 0 ≤ v(x) ≤ 0, that is v(x) = 0 or u1(x) = u2(x) in Ω.



Chapter 4

Sub-harmonic functions.

If we assume that ∆u(x) ≥ 0 in Ω and define

Ψ(r) =
1

ωnrn−1

∫
∂Br(0)

u(y)dA∂Br(0)(y)

for all r such that Br(0) ⊂ Ω. Then we see, following the calculation in (2.2),
that

Ψ′(r) =
1

ωn

∫
∂B1(0)

z · ∇u(rz)dA∂B1(0)(z) =

=
1

ωn

∫
∂B1(0)

∂u(rz)

∂ν
dA∂B1(0)(z) =

1

ωn

∫
B1(0)

∆u(rz)dz ≥ 0.

In particular Ψ(r) is a non-decreasing function and since u is continuous we
have

u(0) = lim
r→0+

Ψ(r) ≤ Ψ(r) =
1

ωnrn−1

∫
∂Br(0)

u(y)dA∂Br(0)(y). (4.1)

We will say that u satisfies the sub-mean value property if it satisfy (4.1).

Definition 1. We say that u ∈ C(Ω) is sub-harmonic if it satisfies the sub-mean
value property:

u(x0) ≤ 1

ωnrn−1

∫
∂Br(x0)

u(y)dA∂Br(x0)(y)

for all x0 ∈ Ω and r ≥ 0 such that Br(x0) ⊂ Ω.
We say that u ∈ C(Ω) is super-harmonic if −u(x) is sub-harmonic. Equiva-

lently, u ∈ C(Ω) is super-harmonic if it satisfies the super-meanvalue property:

u(x0) ≥ 1

ωnrn−1

∫
∂Br(x0)

u(y)dA∂Br(x0)(y)

for all x0 ∈ Ω and r ≥ 0 such that Br(x0) ⊂ Ω.

13
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Since u being sub-harmonic implies that −u is super-harmonic it follows
that every theorem for subharmonic functions have a corresponding theorem
for super-harmonic functions.

Many of the theorems in the previous two sections have versions for sub and
super-harmonic functions with very similar proofs. In particular we have the
following, corresponding to Corollary 1.

Lemma 1. Assume that u ∈ C2(Ω) and that u is sub-harmonic in Ω. Then
∆u(x) ≥ 0 in Ω.

Conversely if u ∈ C2(Ω) and ∆u(x) ≥ 0 in Ω then u(x) is subharmonic in
Ω.

Proof: The proof is very similar to the proof of Corollary 1.
We will argue by contradiction and assume that there exist an x0 ∈ Ω such

that ∆u(x0) < 0 and derive a contradiction. For definiteness we assume that
∆u(x0) = −δ < 0.

Since u ∈ C2(Ω) there exist an rδ < dist(x0, ∂Ω) such that∣∣∆u(x0)−∆u(y)
∣∣ < δ

2

for all y such that |x0 − y| < rδ. In particular ∆u(y) < −δ/2 in Brδ(x
0).

Define Ψ(r) according to

Ψ(r) =
1

ωnrn−1

∫
∂Br(x0)

u(y)dA∂Br(x0)(y).

It follows, for r < rδ, that

Ψ′(r) =
1

ωn

∫
B1(0)

∆u(rz + x0)dz < − 1

ωn

∫
B1(0)

r2 δ

2
dz < 0. (4.2)

Since u ∈ C(Ω) it also follows that limr→0+ Ψ(r) = u(x0). Using (4.2) we see
that ψ(r) < u(x0) for r ∈ (0, rδ). This contradicts the sub-mean value property.

The second part follows by the calculation in the beginning of this section.

Remark: Here we use a wonderful technique of mathematics. In principle
we could define u(x) to be sub-harmonic if u ∈ C2(Ω) and ∆u(x) ≥ 0. Instead
we use the sub-mean value property and are able to define sub-harmonicity for
functions that are only in C(Ω) which is a much more flexible class of functions.
In particular, which we will show and use later, if u and v are subharmonic so
is max(u(x), v(x)) (this would not be true if we demanded that subharmonic
functions had to be in C2).

The Lemma shows that we are not giving up anything in our definition based
on the sub-mean value property. If a sub-harmonic function happens u(x) to be
in C2(Ω) then it satisfies the equation ∆u(x) ≥ 0.

Since our proof of the maximum principle was based on the mean value prop-
erty it is not surprising that the same result holds for sub-harmonic functions
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Theorem 4. The Strong Maximum Principle for Sub-Harmonic Func-
tions. Suppose that u ∈ C(Ω) is sub-harmonic in the bounded domain Ω. Then

sup
x∈Ω

u(x) = sup
x∈∂Ω

u(x).

Furthermore if Ω is also connected and there exist a point x0 ∈ Ω such that
u(x0) = supx∈Ω u(x) then u(x) is a constant.

Proof: The proof is exactly the same as for the strong maximum principle.
The only difference is that the second equality in (3.1) should be an inequality
and every time we referred to the mean value property we now have to refer to
the sub-mean value property.

Next we state a theorem that will be very important in our proof of existence
of solutions for the Dirichlet problem in a general domain. We will state it for
super-harmonic functions, but a similar statement is also true for sub-harmonic
functions.

Theorem 5. Let u, v ∈ C(Ω) be super-harmonic functions. Define

w(x) = min(u(x), v(x)).

Then w(x) is super-harmonic.

Proof: It is clear that w(x) is continuous so we only need to show that w
satisfies the super-mean value property. Notice that by definition w(x) ≤ u(x)
and w(x) ≤ v(x), with one of the inequalities being an equality. We will fix an
arbitrary point x0 ∈ Ω and for definiteness assume that w(x0) = u(x0). Then
since u(x) is super-harmonic we have, for any ball Br(x0) ⊂ Ω, that

w(x0) = u(x0) ≥ 1

ωnrn−1

∫
∂Br(x0)

u(y)dA∂Br(x0)(y) ≥

≥ 1

ωnrn−1

∫
∂Br(x0)

w(y)dA∂Br(x0)(y),

where we used that w(x) ≤ u(x) for all x. But this shows that w satisfies the
super-mean value property.

4.1 Sub and Super-Solutions.

It is possible to extend the concept of sub and super-harmonic functions to
general solutions to the Dirichlet problem.

Definition 2. We say that w(x) ∈ C2(Ω) ∩ C(Ω) is a sub-solution to

∆u(x) = f(x) in Ω
u(x) = g(x) on ∂Ω

(4.3)
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for f ∈ C(Ω) and g ∈ C(∂Ω) if

∆u(x) ≥ f(x) in Ω
u(x) = g(x) on ∂Ω.

Similarly we say that w(x) ∈ C2(Ω) ∩ C(Ω) is a super-solution to (4.3) if

∆u(x) ≤ f(x) in Ω
u(x) = g(x) on ∂Ω.

Remark: Notice that if u ∈ C2(Ω) is sub-harmonic then by Lemma 1 u is a
sub-solution to ∆u(x) = 0.

When we defined sub-harmonicity, we only needed to assume that u ∈ C(Ω)
(see Definition 1) whereas we demand general sub-solutions to be C2. It is
noteworthy that there are other definitions of sub-solutions that require less
stringent assumptions1 - and most of the Theorems we show for sub-solutions
would still be true. For simplicity we will assume that sub and super-solutions
are C2(Ω) for this course.

The following Theorem will be important in our proof of existence of solu-
tions to the Dirichlet problem.

Theorem 6. [The Comparison Principle.] Let Ω be a bounded domain and
suppose that u1(x) ∈ C2(Ω)∩C(Ω) be a sub-solution and u2(x) ∈ C2(Ω)∩C(Ω)
be a super-solution to

∆u(x) = f(x) in Ω
u(x) = g(x) on ∂Ω.

(4.4)

Then u1(x) ≤ u2(x) in Ω.

Proof: Notice that w(x) = u1(x)− u2(x) solves

∆w(x) ≥ 0 in Ω
w(x) = 0 on ∂Ω.

That is w(x) is sub-harmonic. By the maximum principle for sub-harmonic
functions it follows that w(x) ≤ 0 which implies that u1(x) ≤ u2(x).

Notice that if u(x) ∈ C2(Ω) ∩ C(Ω) is a solution to (4.4) then u is both a
sub and a super-solution so this Theorem directly implies Theorem 3.

1One that comes readily to mind would be that u(x) is a sub-solution to (4.3) if u(x)−v(x)
is sub-harmonic for any solution ∆v(x) = f(x) in Ω. By this definition we would only need
u ∈ C(Ω) to verify the definition.



Chapter 5

Interior Regularity of
Harmonic Functions.

A major part of the study of partial differential equations (PDEs), a part that
can be a little difficult to grasp, is the regularity theory. Regularity theory is
the branch of PDE studies that investigates how regular a solution is, basically
how many derivatives the solution has and if one can bound those derivatives.

We have already seen that the mean value property is equivalent to har-
monicity for C2 functions. But we only need the function to be continuous in
order to define the mean value property. So if we would define a function to be
harmonic if it is continuous and satisfies the mean value property could we still
make sense of the equation ∆u(x) = 0?

There are many different definitions of a function being a solution to a PDE;
classical solutions (solutions that are continuously differentiable), weak solutions
(defined by means of integration by parts), variational solutions (functions that
minimise a certain energy), viscosity solutions (solutions defined by the com-
parison principle) etc. The only solutions that a priori have enough derivatives
to satisfy the equation in the classical sense are classical solutions. These are
the solutions that we have been working with so far, we assume that a solution
to ∆u(x) = 0 are in C2 which makes it unproblematic to interpret whether a
given function is a solution or not.

There are several reasons that regularity theory is so important for the study
of partial differential equations. One reason is that it is often easier to prove
the existence of a, say, weak solution than it would be to show the existence of
a classical solution. But it is of obvious interest to know if the weak solution,
once we have it, is in fact a classical solution. Other reasons for doing regularity
theory is that one can use regularity theory to show properties of solutions,
something that we will exemplify by by the Liouiville Theorem below. Regular-
ity is also strongly related to existence theory, often it is only possible to show
that a solution exists by approximating the PDE and by a limit procedure for
which we need compactness. As a final motivation we should mention that only

17
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in very special cases are we able to write down a solution to a PDE. Instead we
rely on numerical analysis to calculate approximate solutions with computers.
In order to verify that we actually get a good approximation, and to say how
good our approximation is, we need to know something about the regularity of
the solutions.

In this section we will start to do some easy regularity theory. Our first
theorem states that if u(x) satisfies the mean value property in Ω then u ∈
C∞(Ω).

Theorem 7. Let Ω be a domain. Suppose that u ∈ C(Ω) and satisfies the mean
value property in Ω. Then u ∈ C∞(Ω) and ∆u(x) = 0 in Ω.

Proof: It is enough to show that u ∈ C∞(Ωε) for each ε > 0 where

Ωε = {x ∈ Ω; dist(x, ∂Ω) > ε}.

Fix an ε > 0 and define uε by means of the standard mollifier

uε(x) =

∫
Ω

u(y)φε(x− y)dy,

where φε(x) is a standard mollifier.It follows that uε ∈ C∞(Ωε).
1

We will show that uε(x) = u(x) in Ωε. This is established in the following
calculation

uε(x) =

∫
Bε(x)

φε(x− y)u(y)dy =

{
change to
polar coordinates

}
=

=
1

εn

∫ ε

0

φ
(r
ε

)(∫
∂Bs(x)

u(y)dA∂Bs(x)

)
ds =

=
1

εn

∫ ε

0

φ
(r
ε

)
ωns

n−1u(x)ds,

where we have used the mean value property in the last equality. Noticing that∫
∂Bs(0)

dA∂Bs(0)(y) = ωns
n−1 we may continue the calculation

1

εn

∫ ε

0

φ
(r
ε

)
ωns

n−1u(x)ds =

= u(x)

∫ r

0

∫
∂Bs(0)

1

εn
φ
(r
ε

)
dA∂Bs(0)(y)ds = u(x)

∫
Bε(0)

φε(y)dy = u(x),

where we used part 3 of Lemma 2 in week 5’s lecture notes in the final step. In
particular it follows that u(x) = uε(x) ∈ C∞(Ωε) for every x ∈ Ωε. Since Ω is
open it follows that u ∈ C∞ (∪ε>0Ωε) = C∞(Ω).

1See the appendix in the first part of these lecture notes for the definition of standard
mollifiers and the C∞-proof.
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Naively, one might think that the above result, that if u is harmonic then
u ∈ C∞, is the best possible result in regularity theory, which is after all about
showing that solutions to partial differential equations have derivatives.

There are two reasons why this result is not the best possible. The first
reason is that one can show (but we will not) that harmonic functions are in
fact analytic (can be expressed in a Taylor series). That is if ∆u(x) = 0 in the
domain Ω and x0 ∈ Ω then there is a ball Br(x

0) ⊂ Ω such that u(x) equals it
Taylor expansion

u(x) =

∞∑
k=0

∑
|α|=k

cα(x− x0)α in Br(x
0),

where we have used the multiindex notation again; α = (α1, ..., αn) in a multi-
index and (x−x0)α = (x1−x0

1)α1(x2−x0
2)α2 ...(xn−x0

n)αn . That analyticity is
stronger than C∞ is easy to see since the standard mollifier φ(x) ∈ C∞(Rn) but
the Taylor expansion at any point on ∂B1(0) must be identically zero since all
derivatives vanish on ∂B1(0). Thus we can not express φ by means of a Taylor
series.

The other reason why the above C∞ result is not the best possible (in every
respect) is more subtle. We already know that any continuous function f may
be approximated as closely as we want by a C∞ function, namely fε (see Lemma
2 in the Lectures from week 5). This means that a function being in C∞ does
not mean very much, in particular convergence and compactness properties of
C∞ functions are not good.

We need estimates in order to deduce desirable compactness properties of
solutions. By estimates we mean some inequality where we control higher deriva-
tives by means of lower derivatives. A typical, and important, estimate is pre-
sented in the following theorem where we show that derivatives on any order
of a harmonic function can be controlled by the integral of the function (that
is higher derivatives are controlled by the zeroth order derivatives). Before we
state the theorem we need a definition.

Definition 3. If u is a function whose absolute value is integrable in Ω we write

‖u‖L1(Ω) =

∫
Ω

|u(x)|dx.

More generally, if |u|p is integrable in Ω we write

‖u‖Lp(Ω) =

(∫
Ω

|u(x)|dx
)1/p

.

Remark: We can consider the space of all integrable functions v such that
‖v‖Lp(Ω) < ∞, call this space Lp(Ω). If 1 ≤ p < ∞ then ‖ · ‖Lp(Ω) is a norm
on Lp(Ω). The most important result in integration theory is that Lp(Ω) is
a complete space with the norm ‖ · ‖Lp(Ω) if we interpret the integral in the
Lebesgue sense. These considerations are not important for us in this course.
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Theorem 8. Suppose that u ∈ C2(Ω) is harmonic in Ω. Then for each ball
Br(x

0) ⊂ Ω and each multiindex α of length |α| = k ≥ 1 we have the following
estimate ∣∣∣∣∂|α|u(x0)

∂xα

∣∣∣∣ ≤ n(2n+1nk)k

ωnrn+k
‖u‖L1(Br(x0)).

Proof: Since u is harmonic in Ω we know that u ∈ C∞(Ω). Writing ∂u
∂xi

= ui
we see by changing the order of differentiation that

∆ui(x) =
∂

∂xi

(
∆u(x)

)
=

∂

∂xi

(
0
)

= 0.

So ui is harmonic and satisfies therefore the mean value property. In particular
for Br(x

0) ⊂ Ω we may apply the mean value property to the ball Br/2(x0):

ui(x
0) =

n2n

ωnrn

∫
Br/2(x0)

ui(y)dy.

Taking the absolute values and integrating by parts we get

|ui(x0)| =

∣∣∣∣∣ n2n

ωnrn

∫
Br/2(x0)

∂u(y)

∂xi
dy

∣∣∣∣∣ =

=

∣∣∣∣∣ n2n

ωnrn

∫
∂Br/2(x0)

u(y)νidA∂Br/2(x0)
(y)

∣∣∣∣∣ ≤ 2n

r
sup

∂Br/2(x0)

(
|u|
)

(5.1)

where we used the notation νi = ν · ei where ν is the unit normal of ∂Br/2(x0)
and that∣∣∣∣∣

∫
∂Br/2(x0)

u(y)dA∂Br/2(x0)(y)

∣∣∣∣∣ ≤ sup
∂Br/2(x0)

|u|
∫
∂Br/2(x0)

dA∂Br/2(x0)(y) =

1

ω(r/2)n−1
sup

∂Br/2(x0)

|u|

in the last inequality. To estimate supy∈∂Br/2(x0)

(
|u(y)|

)
we use the mean value

formula again. Since Br(x
0) ⊂ Ω we have that Br/2(y) ⊂ Ω for each y ∈

∂Br/2(x0). We can therefore apply the mean value formula to the ball Br/2(y) ⊂
Ω:

|u(y)| ≤ n2n

ωnrn

∣∣∣∣∣
∫
Br/2(y)

u(z)dz

∣∣∣∣∣ ≤ n2n

ωnrn

∫
Br/2(y)

|u(z)|dz ≤ (5.2)

≤ n2n

ωnrn

∫
Br(x0)

|u(z)|dz =
n2n

ωnrn
‖u‖L1(Br(x0)),

where we used that
∫
Br/2(y)

|u(z)|dz ≤
∫
Br(x0)

|u(z)|dz since Br/2(y) ⊂ Br(x
0)

and that the integrand is non negative.
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Taking the supremum over ∂Br/2(x0) on both sides in (5.2) and inserting
this in (5.1) we get

|ui(x0)| ≤ n22n

ωnrn+1
‖u‖L1(Br(x0))

which proves the theorem for |α| = 1.

In order to prove the Theorem for general α we will use induction on the
length of |α|. We will assume that we have proved the theorem for all multiin-
dexes α of length k − 1. Now fix a multiindex β of length k and assume that
∂|β|

∂xβ
= ∂

∂xi
∂|α|

∂xα where α is a multiindex of length k− 1. Writing uγ(x) = ∂|γ|u(x)
∂xγ

for any multiindex γ we have for any Br(x
0) ⊂ Ω that

|uβ(x0)| =

∣∣∣∣∣ nknωnrn

∫
Br/k(x0)

∂uα(y)

∂xi
dy

∣∣∣∣∣ =

=

∣∣∣∣∣ nknωnrn

∫
∂Br/k(x0)

uα(y)νidA∂Br/k(x0)
(y)

∣∣∣∣∣ ≤ kn

r
sup

∂Br/k(x0)

(
|uα|

)
. (5.3)

Using the induction hypothesis we see that, for y ∈ ∂Br/k(x0)

|uα(y)| ≤
n
(
2n+1n(k − 1)

)k−1
kn+k−1

ωn
(
(k − 1)r

)n+k−1

∣∣∣∣∣
∫
B(k−1)r/k(y)

u(z)dz

∣∣∣∣∣ ≤
≤
n
(
2n+1n

)k−1
kn+k−1

ωn(k − 1)nrn+k−1

∫
B(k−1)r/k(y)

|u(z)|dz ≤ (5.4)

≤
n
(
2n+1n

)k−1
kn+k−1

ωn(k − 1)nrn+k−1
‖u‖L1(Br(x0)),

Putting (5.3) and (5.4) together we see that

|uβ(x0)| ≤
n2
(
2n+1n

)k−1
kn+k

ωn(k − 1)nrn+k
‖u‖L1(Br(x0)) =

=

(
kn

2n+1(k − 1)n

)(
n(2n+1nk)k

ωnrn+k
‖u‖L1(Br(x0))

)
,

noticing that the first bracket to the right in the last equation is less than one
gives the desired estimate.

As a direct consequence of Theorem 8 we state the following theorem.

Theorem 9. [The Liouiville Theorem] Suppose that u ∈ C0(Rn) is har-
monic. Then if |u(x)| ≤ C for every x ∈ Rn and for some constant C0 (C0 is
independent of x) then u(x) is constant in Rn.
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Proof: We use Theorem 8 for k = 1 and deduce that for any j ∈ {1, 2, ..., n}∣∣∣∣∂u(x0)

∂xj

∣∣∣∣ ≤ n22n

ωnrn+1
‖u‖L1(Br(x0)) =

n22n

ωnrn+1

∫
Br(x0)

|u(y)|dy ≤ n2n

r
C0. (5.5)

If we let r →∞ in (5.5) we can deduce that∣∣∣∣∂u(x0)

∂xj

∣∣∣∣ = 0

for every x0 ∈ Rn and j. It follows that u is constant.

Corollary 2. Suppose that u ∈ C0(Rn) is harmonic. Then if |u(x)| ≤ C(1 +
|x|k+α) for every x ∈ Rn and for some constant C0, k ∈ N and 0 ≤ α < 1 then
u(x) is a polynomial of degree at most k in Rn.

Proof: The argument is similar to the argument in Theorem 9. From Theo-
rem 8 we deduce that

∂|β|u(x)

∂xβ
≤ C

r1−α

for any multiindex β of length k + 1. In particular, sending r →∞ we see that
the (k+ 1) :st derivatives of u(x) are zero. That is the k :th derivatives of u are
constant. It follows that u is a polynomial of degree at most k.

5.1 The Harnack Inequality.

In this section we will state a very important important theorem known as the
Harnack inequality. At this point I am not sure if we are going to further explore
its consequences in this course. We will certainly not talk more about it in the
first part of the course.

Theorem 10. (The Harnack Inequality.) Let Ω be a domain. Then for
every connected compact set K ⊂ Ω there exist a constant CK such that

sup
x∈K

u(x) ≤ CK inf
x∈K

u(x)

for all non-negative harmonic functions u in Ω.

Proof: From the mean value property (used both in the first and in the last
equality) and standard estimates we may conclude that

u(x) =
n

ωn(2r)n

∫
B2r(x)

u(z)dz ≥ n

ωn(2rn

∫
Br(y)

u(z)dz =
1

2n
u(y) (5.6)

for any y ∈ Br(x). Notice that we use that u ≥ 0 in the inequality of (5.6).
We have thus shown that

u(x) ≥ 1

2n
u(y) (5.7)
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for any y ∈ Br(x).
Next we let r0 = 1

4dist(K, ∂Ω) and notice that for any z ∈ K there is a
path of balls (that will be chosen below), for j = 1, 2, ..., j0, Br0(yj) such that
Br0(x) ∪ Br0(yj) 6= ∅ and Br0(yj) ∪ Br0(yj+1) 6= ∅ and z ∈ Br0(yj0). Since K
is compact we see that j0 is finite. In particular, the set ∪z∈KBr0(z) is an open
cover of K so there is a finite sub-cover K ⊂ ∪Nk=1Br0(zk). It follows that we
may choose yj = zkj for some kj and conclude that j0 ≤ N .

We may pick a sequence x̃0 = x, x̃j ∈ Br0(yj) ∩ Br0(yj+1) and x̃j0+1 = z
and apply (5.7) with x̃j in place of x and x̃j+1 in place of y and r = 2r0. Since
x̃j , x̃j+1 ∈ Br0(yj+1) ⊂ B2r0(x̃j) we it is justified to apply (5.7).

In particular we have shown that

u(x) = u(x̃0) ≥ 2−nu(x̃1) ≥ 2−n
(
2−nu(x̃2)

)
≥ ... ≥

≥ 2−(j0+1)nu(x̃j0+1) = 2−(j0+1)nu(z).

But this holds for arbitrary x, z ∈ K. In particular we can choose x such that
u(x) = infy∈K

(
u(y)

)
and z such that u(z) = supy∈K

(
u(y)

)
. The theorem

follows.
Remark: Notice that we may view the Harnack inequality as a quantitative

version of the strong maximum principle. In particular if u ≥ 0 is a harmonic
function in the bounded connected domain Ω. Then by the strong maximum
principle we know that −u (which is also harmonic) satisfies either −u(x) < 0 in
Ω or there exist a point x0 ∈ Ω such that −u(x0) = 0 in which case −u(x) = 0
in Ω. However the strong maximum principle says nothing if −u(x0) < 0 but
|u(x0)| is small.

But if we assume that u(x0) = ε for some x0 ∈ Ω then the Harnack inequality
states that 0 ≤ u(x) ≤ CKε for all x ∈ K, where K is some compact connected
set containing x0. If ε = 0 then it follows that u = 0 on every compact set in
Ω, that is u = 0 in Ω so we recover the strong maximum principle.

But the estimate 0 ≤ u(x) ≤ CKε is stronger than the strong maximum
principle in that it provides information even if ε > 0.
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Chapter 6

Exercises.

Exercise 1. The following Theorem is known as the weak maximum principle

Theorem: Let u ∈ C2(Ω) ∩ C(Ω) where Ω is a bounded domain. Further-
more assume that ∆u(x) ≥ 0 in Ω. Then

sup
x∈Ω

u(x) ≤ sup
x∈∂Ω

u(x).

Prove this Theorem using the following steps:

Step 1: Assume that x ∈ Ω and that x is a local maximum of u(x) show that
∆u(x) ≤ 0.

(Hint: What do we know about the second derivatives at a local maximum?)

Step 2: Prove the Theorem under the assumption that ∆u(x) > 0.
(Hint: If the Theorem is false can you find a contradiction to step 1?)

Step 3: Define uε(x) = u(x)− ε|x|2 and show that the Theorem is true for uε.
Pass to the limit ε→ 0 and conclude that the Theorem is true for u.

Exercise 2. Assume that u ∈ C(Rn) and that for every φ ∈ Cc(Rn)∫
Rn
u(x)φ(x) = 0.

Show that u(x) = 0.
(Hint: Assume that u(x0) > 0 and let φ(x) = max(δ − |x − x0|, 0) chose δ

small enough and derive a contradiction.)

Exercise 3 a) Let u ∈ C2(Ω) solve ∆u = f(x) in Ω, where Ω ⊂ Rn is some
domain in Rn and f ∈ C(Ω). Show that∫

Ω

(
∇u(x) · ∇φ(x) + φ(x)f(x)

)
dx = 0 (6.1)

25
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for every φ ∈ C1
0 (Ω) ≡ {φ ∈ C1(Ω); φ = 0 on ∂Ω}.

(Hint: Use Green’s formula.)

b) Let u ∈ C2(Rn) and assume that (6.1) holds for every φ ∈ C1(Ω). Prove
that ∆u = f .

(Hint: Look at Exercise 2.)

c) Note that the equation (6.1) makes perfectly good sense even if f /∈ C(Ω)
and in particular (6.1) makes sense even if u ∈ C1(Ω) but u /∈ C2(Ω). We will
say that u is a weak solution of ∆u = f if u ∈ C1(Ω) and if (6.1) holds for every
φ ∈ C1

0 (Ω)
Try to find a weak solution in R3 to

∆u =

{
1 when |x| ≤ 1
0 when |x| > 1.

(Hint: Look for a radial u(x), that is u(x) = u(|x|) = u(r).)

d) Let u be your weak solution form c) and define

v(x) =

{
u(x) when |x| ≤ 1
u(x) + 1

|x| − 1 when |x| > 1.

Then v is continuous and ∆v = 1 when |x| < 1 and ∆v = 0 when |x| > 1.
However, v /∈ C1(R3) prove that v does not satisfy (6.1) and v is therefore not
a weak solution.

Remark: Notice that what we do in this exercise is very similar to what we
did when we defined sub-harmonic functions. Both solutions and sub-harmonic
functions can be defined by using C2. But we may relax the C2 assumption
when we define sub-harmonic functions by using the mean value formula. In
the same way we can relax the notion of solution to weak solution where a weak
solution is defined in a bigger function space (C1 instead of C2). This allows us
to talk about solutions with discontinuous right hand sides such as the solution
in part c).

Exercise 4. Let u ∈ C2(B1(0)) ∩ C(B1(0)) and

∆u = f(x) in B1(0) ⊂ Rn and

u(x) = g(x) on ∂B1(0).

Where f, g ∈ C(Rn) are some given functions. Show that

sup
B1

u ≤ sup
∂B1(0)

g +
1

2n
sup
B1

f−(x),

where f−(x) = max(0,−f(x)).
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(Hint: What equation will v = u + α|x|2 − α solve when α is a constant,
when is v sub-harmonic?)

Exercise 5. Hopf’s Boundary Lemma. Let u ∈ C2(B
+

1 ), where B+
1 = {x ∈

B1; xn > 0}, and

∆u = 0 in B+
1

u = g ∈ C2 on ∂B1 ∩ {xn > 0}
u = 0 on B1 ∩ {xn = 0}.

Assume furthermore that 0 ≤ g and that g is not identically zero.
Then the Hopf boundary lemma states that

∂u(0)

∂xn
> 0,

the important point is that the inequality is strict. The aim of this exercise is
to prove this.

a.) Let u be as above. Show that the maximum principle implies that

∂u(0)

∂xn
≥ 0

b.) Define v(x) to be

v(x) =

{
u(x) if xn ≥ 0
−u(x1, x2, ..., xn−1,−xn) if xn < 0.

Show that v ∈ C2(B1) and that ∆v = 0 in B1.

c.) Use the mean value formula to express ∂v(0)
∂xn

. Use this expression to

show that ∂v(0)
∂xn

> 0.

(Hint: Let en = (0, 0, 0..., 0, 1) as usual, then
∫
B1
div(env(x))dx =

∫
B1

∂v
∂xn

dx,

also if ν is the normal of ∂B1(0) then ν ·en > 0 at points on ∂B1 where xn > 0...)
d.) Use b.) and c.) to prove Hopf’s lemma.

Exercise 6. Suppose that u ∈ C2(Rn+) and that ∆u(x) = 0 in Rn+ and
u(x1, x2, ..., xn−1, 0) = 0. Furthermore assume that lim|x|→∞

(
|x|−1|u(x)|

)
= 0

uniformly.
a) Define

v(x) =

{
u(x) for xn ≥ 0
−u(x1, x2, ..., xn−1,−xn) for xn < 0.

Show that ∆v = 0 in Rn.
b) Use the estimates on the first derivatives of v to prove that ∇v(x) = 0.

Conclude that u(x) = 0.
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Exercise 7. Let Ω be an unbounded domain and assume that

∆ui(x) = f(x) in Ω
ui(x) = g(x) on ∂Ω,

for i = 1, 2.
a) Show that if limΩ3x→∞ |u1(x)− u2(x)| = 0 uniformly then u1 = u2.
b) Assume that Ω = Rn+ and show that if lim|x|→∞

(
|x|−1|u1(x)− u2(x)|

)
=

0 then u1 = u2.
(Hint: Look at Exercise 6.)
c) Assume that Ω ⊂ R2 and that, in polar coordinates, Ω = {(r, φ); φ ∈

(0, φ0)} for some φ0 ∈ (0, 2π). Show that if lim|x|→∞
(
|x|−π/φ0 |u1(x)− u2(x)|

)
=

0 then u1 = u2.
(Hint: Let w(x) = u1(x) − u2(x) − εrπ/φ0 sin(πφ/φ0). Is w(x) harmonic?

Does w(x) have a sign on ∂ (Ω ∩Br(0)) if R is large enough?)

Exercise 8. Use the Harnack inequality to show that if {uj}∞j=1 is an increas-

ing sequence of harmonic functions in the connected domain Ω then if uj(x0)
converges for some x0 ∈ Ω then there exist a harmonic function u0 such that
uj → u0 uniformly on compact sets K ⊂⊂ Ω.

(Hint: What can you say about uj+k − uj for k ≥ 1?)

Exercise 9. Let φε(x) be the standard mollifier. Use the estimate

sup
Rn

∣∣∣∣∂|α|φ(x)

∂xα

∣∣∣∣ ≤ Cα
for any multiindex α together with

∂|α|φε(x)

∂xα
=

1

εn+|α|
∂|α|φ(x/ε)

∂xα

to directly show that if u is harmonic in Ω then for any x0 ∈ Ω∣∣∣∣∂|α|u(x0)

∂xα

∣∣∣∣ ≤ C0Cα
1

dist(x0, ∂Ω)n+|α| ‖u‖L1(Bdist(x0,∂Ω)(x
0)),

for some constant C0.

Exercise 10. Suppose that u is harmonic in Ω. Prove that u2 is sub-harmonic
in Ω.

(Hint: Is u2 ∈ C2(Ω)?)

Exercise 11. Show that the following definition is equivalent to our definition
of sub-harmonicity:

We say that u ∈ C(Ω) is sub-harmonic if for any D ⊂ Ω we have u ≤ h for
all h that are harmonic in D and h ≥ u on ∂D.


