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Chapter 1

Compactness Properties of
Harmonic Functions.

One of the stated reasons for the importance to develop a regularity theory for
harmonic functions is that estimates implies compactness for harmonic func-
tions. With the Arzela-Ascoli Theorem at hand (see the appendix) we can to
prove the following version of Weierstrass theorem.

Theorem 1. Let {uj}∞j=1 be a uniformly bounded sequence of harmonic func-

tions in the domain Ω. That is, uj ∈ C2(Ω), ∆uj(x) = 0 in Ω and there exist
a constant C0 (independent of j) such that supx∈Ω |uj(x)| ≤ C0.

Then there exists a sub-sequence {ujk}∞k=1 of {uj}∞j=1 that is uniformly con-

vergent on compact sets in Ω and the limit u0(x) = limk→∞ ujk is harmonic in
Ω.

Proof: We want to show that the sequence {uj}∞j=1 is equicontinuous in Ω.
Then the Arzela-Ascoli Theorem assures that there is a sub-sequence converging
uniformly on compact sets of Ω.

To show that the sequence is equicontinuous we notice that for every point
x ∈ Ω2r = {x ∈ Ω; dist(x, ∂Ω) > 2r} we have B2r(x) ⊂ Ω. In particular for
y ∈ Br(x) we have the estimate

∣∣∇uj(y)
∣∣ ≤ √nn22n+1

ωnrn+1
‖uj‖L1(Br(y)).

Using that |uj | ≤ C0 we see that

‖uj‖L1(Br(y)) =

∫
Br(y)

|u(z)|dz ≤ ωnr
n

n
C0.

So for any x ∈ Ω2r we have

∣∣∇uj(y)
∣∣ ≤ n3/22n+1

r
C0, (1.1)

3



4CHAPTER 1. COMPACTNESS PROPERTIES OF HARMONIC FUNCTIONS.

for every y ∈ Br(x).
To show that {uj}∞j=1 is equicontinuos at x we need, for every ε > 0, to find

a δε > 0 such that

|uj(x)− uj(y)| < ε for all y ∈ Bδε(x),

where δε is independent of j. There is no loss of generality to assume that
δε < r.

By the mean value Theorem (from analysis, not the mean value Theorem
for harmonic functions) we get for some t ∈ (0, 1)

|uj(x)− uj(y)| =
∣∣(y − x) · ∇uj

(
x+ t(y − x)

)∣∣ ≤ n3/22n+1

r
C0|x− y| (1.2)

if |x− y| < r where we also used the estimate (1.1). If we set

δε = inf

(
r

C0n3/22n+1
ε, r

)
,

then (1.2) implies that
|uj(x)− uj(y)| < ε (1.3)

for |x − y| < δε. Since (1.3) is independent of j it follows that {uj}∞j=1 is
equicontinious in Ω.

By the Arzela-Ascoli Theorem it follows that we can find a sub-sequence
{ujk}∞k=1 of {uj}∞j=1 that converges uniformly on compact sets of Ω to some

u0 ∈ C(Ω).
We still need to show that u0 is harmonic. We could do that by applying the

Arzela-Ascoli Theorem to the second derivatives (using estimates on the third
derivatives to show that the second derivatives of {uj}∞j=1 forms an equicontin-
uous sequence). But we will use another argument based on the mean value
Theorem.

Let x0 ∈ Ω and Br(x0) ⊂ Ω. Then since Br(x0) is a compact set we know
that ujk → u0 uniformly Br(x0). In particular for every ε > 0 there exists an
Nε such that |u0(x)− ujk(x)| < ε for all k > Nε and x ∈ Br(x0).

Using this and the mean value property for ujk we see that when k > Nε

ε >
∣∣u0(x0)− ujk(x0)

∣∣ =

∣∣∣∣∣u0(x0)− n

ωnrn

∫
Br(x0)

ujk(y)dy

∣∣∣∣∣ =

=

∣∣∣∣∣u0(x0)− n

ωnrn

∫
Br(x0)

u0(y)dy − n

ωnrn

∫
Br(x0)

(
ujk(y)− u0(y)

)
dy

∣∣∣∣∣ ≥
≥

∣∣∣∣∣u0(x0)− n

ωnrn

∫
Br(x0)

u0(y)dy

∣∣∣∣∣−
∣∣∣∣∣ n

ωnrn

∫
Br(x0)

(
ujk(y)− u0(y)

)
dy

∣∣∣∣∣ ≥
≥

∣∣∣∣∣u0(x0)− n

ωnrn

∫
Br(x0)

u0(y)dy

∣∣∣∣∣− ε
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where we used that |u0(x)− ujk(x)| < ε in Br(x0) in the last inequality.
In particular ∣∣∣∣∣u0(x0)− n

ωnrn

∫
Br(x0)

u0(y)dy

∣∣∣∣∣ < 2ε,

for any ε > 0. That is u0 satisfies the mean value property and is therefore
harmonic.

1.1 Appendix: The Arzela-Ascoli Theorem.

One of the main reasons that we are interested in estimating the derivatives of
a harmonic function is that it gives good compactness properties of solutions,
that is we can show that bounded sequences of solutions converge in Ck. One
of the main compactness theorems for functions is the Arzela-Ascoli Theorem
which we will prove presently. We begin with a definition.

Definition 1. Let F be a set of functions defined in Ω. We say that F is
equicontinuous at x ∈ Ω if for every ε > 0 there exist an δx,ε > 0 such that

|f(x)− f(y)| ≤ ε

for all y ∈ Ω such that |x− y| < δx,ε and all f ∈ F .
We also say that F is equicontinuous in Ω if F is equicontinuous at every

x ∈ Ω.

Naturally, we may consider a sequence of functions {fj}∞j=1 defined on Ω as
a set F = {fj ; j ∈ N} and we may therefore say that a sequence {fj}∞j=1 is
equicontinuous at x or in Ω.

Theorem 2. Let {fj}∞j=1 be a uniformly bounded sequence of functions defined
on Ω, that is supx∈Ω |fj(x)| ≤ C for some C independent of j. Assume fur-
thermore that {fj}∞j=1 is equicontinuous in Ω. Then there exist a sub-sequence
{fjk}∞k=1 such that fjk(x) converges pointwise.

If we define f0(x) = limk→∞ fjk(x) then fjk → f0 uniformly on compact
subsets and f0 ∈ C(Ω).

Proof: The proof is rather long so we will divide it into several steps.
Step 1: There is a sub-sequence {fjk}∞k=1 that converges pointwise on a

countable dense set of Ω.
Consider the intersection of Ω and the points with rational coordinates ΩQ ≡

Qn∩Ω. Since Qn is countable it follows that ΩQ is countable. Say ΩQ = {yj ; j ∈
N, yj ∈ Qn}.

We will inductively define the sub-sequence {fjk}∞k=1 so that it converges
pointwise on ΩQ.

Consider the sequence {fj(y1)}∞j=1. Since |fj | ≤ C in Ω it follows that

|fj(y1)| ≤ C. In particular {fj(y1)}∞j=1 is a bounded sequence of real numbers.
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We may thus extract a convergent sub-sequence which we will denote {f1,j}∞j=1

where the sub-script 1 indicates that the sequence converges at y1.
Next we make the induction assumption that we have extracted sub-sequences

{fl,j}∞j=1 for each l ∈ {1, 2, 3, ...,m}, such that

1. {fl,j}∞j=1 is a sub-sequence of {fl−1,j}∞j=1 for l = 2, 3, 4, ...,m

2. and fm,j(y
l) converges for l = 1, 2, 3, ...,m.

In order to complete the induction we need to show that we can find a sub-
sequence {fm+1,j}∞j=1 of {fm,j}∞j=1 such that {fm+1,j(y

m+1)}∞j=1 converges.

Arguing as before, we see that {fm,j(ym+1)}∞j=1 is a bounded sequence in
R and we may thus extract a sub-sequence, that we denote {fm+1,j}∞j=1, that
converges.

By induction it follows that for each m ∈ N there exist a sequence {fm,j}∞j=1

such that {fm,j}∞j=1 is a sub-sequence of {fm−1,j}∞j=1 and {fm,j(ym)}∞j=1 is
convergent.

Notice that since {fm,j}∞j=1 is a sub-sequence of {fm−1,j}∞j=1 and {fm−1,j(y
l)}∞j=1

converges for 1 ≤ l ≤ m− 1 it follows that {fm,j(yl)}∞j=1 converges to the same

limit for 1 ≤ l ≤ m− 1. In particular, {fm,j(yl)}∞j=1 converges for all l ≤ m.
Now we define the sequence {fjk}∞k=1 by a diagonalisation procedure

fjk = fk,k.

Noticing that {fjk}∞k=m = {fk,k}∞k=m is a sub-sequence of {fm,j}∞j=1. This
follows from the fact that fk,k is an element of the sequence {fk,j}∞j=1. But
{fk,j}∞j=1 is a sub-sequence of {fm,j}∞j=1 for k ≥ m.

We may conclude that {fjk}∞k=m converges at yl for all l ≤ k. But k is
arbitrary so fjk(yl) converges for every l ∈ N. This proves step 1.

Step 2: The sequence {fjk}∞k=1 converges pointwise in Ω.
It is enough to show that {fjk(x)}∞k=1 is a Cauchy sequence for every x ∈ Ω.

To that end we fix an ε > 0. We need to show that there exist an Nε ∈ N such
that |fjk(x)− fjl(x)| < ε for all k, l > Nε.

Since {fjk}∞k=1 is equicontinuous at x ∈ Ω there exist a δx,ε/3 such that

|fjk(x)− fjk(y)| < ε

3
for all k ∈ N, (1.4)

and y ∈ Ω such that |x− y| < δx,ε/3.
Moreover since ΩQ is dense in Ω there exist an yx ∈ ΩQ such that |x− yx| <

δx,ε/3. In step 1 we showed that fjk(y) was convergent for all y ∈ ΩQ in particular
it follows that {fjk(yx)}∞k=1 is a Cauchy sequence. That is, there exist an
Nyx,ε/3 ∈ N such that

|fjk(yx)− fjl(yx)| < ε

3
for all k, l > Nyx,ε/3. (1.5)
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From (1.4) and (1.5) we can deduce that

|fjk(x)−fjl(x)| ≤ |fjk(x)−fjk(yx)|+ |fjl(x)−fjl(yx)|+ |fjk(yx)−fjl(yx)| < ε,

for all k, l > Nyx,ε/3. It follows that {fjk(x)}∞k=1 is a Cauchy sequence and this
finishes the proof of step 2.

Step 3: Define f0(x) = limk→∞ fjk(x), then f0 ∈ C(Ω).
Since fjk(x) is convergent for every x ∈ Ω by step 2 it follows that f0 is well

defined in Ω. To show continuity we need to show that for every x ∈ Ω and
ε > 0 there exist a δε > 0 such that

|f0(x)− f0(y)| < ε

for every y ∈ Ω such that |x − y| < δε. By equicontinuity there exist a δx,ε/3
such that

|fjk(x)− fjk(y)| < ε

3
(1.6)

for every y ∈ Ω such that |x− y| < δx,ε/3 and all j ∈ N.
Also by step 2 there exist an Nx,ε/3 such that

|f0(x)− fjk(x)| < ε

3
(1.7)

for all k ≥ Nx,ε/3. And an Ny,ε/3 such that

|f0(y)− fjk(y)| < ε

3
(1.8)

for all k ≥ Ny,ε/3.
From (1.6), (1.7) and (1.8) we can deduce that for y ∈ Ω such that |x− y| <

δx,ε/3

|f0(x)− f0(y)| ≤ |f0(x)− fjk(x)|+ |f0(y)− fjk(y)|+ |fjk(x)− fjk(y)| < ε

if k > max(Nx,ε/3, Ny,ε/3).
This proves step 3.

Step 4: {fjk}∞k=1 converges uniformly on compact sets.
We fix a compact set K ⊂ Ω. We need to show that for every ε > 0 there

exist an Nε such that when k > Nε then |f0(x)− fjk(x)| < ε for all x ∈ K.
Notice that by equicontinuity there exist a δx,ε/3 for each x ∈ K such that

for all k ∈ N
|fjk(x)− fjk(y)| < ε

3
(1.9)

for all y ∈ Bδx,ε/3(x) ∩ Ω.
Notice that the ballsBδx,ε/3(x) forms an open cover ofK: K ⊂ ∪x∈KBδx,ε/3(x).

Since K is compact there exist a finite sub-cover Bδ
xl,ε/3

(xl), for l = 1, 2, 3, ..., l0

for some l0 ∈ N. That is K ⊂ ∪l0l=1Bδxl,ε/3(xl).
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Also, using that limk→∞ fjk(xl) = f0(xl), we see that there exist an Nxl,ε/3
such that

|fji(xl)− fjk(xl)| < ε

3
(1.10)

for all i, k > Nxl,ε/3. We choose Nε = max
(
Nx1,ε/3, Nx2,ε/3, ..., Nxl0 ,ε/3

)
.

SinceK ⊂ ∪l0l=1Bδxl,ε/3(xl) it follows that for every x ∈ K that x ∈ Bδ
xl,ε/3

(xl)

for some l. Using this and (1.9) and (1.10) we see that

|fji(x)− fjk(x)| ≤ |fji(x)− fji(xl)|+ |fjk(x)− fjk(xl)|+ |fji(xl)− fjk(xl)| <
(1.11)

<
ε

3
+
ε

3
+
ε

3
= ε

for all k ≥ Nε. Taking the limit i→∞ in (1.11) we see that

|f0(x)− fjk(x)| < ε

for all k > Nε. This finishes the proof of the Theorem.



Chapter 2

Existence of Solutions.

2.1 The Perron Method.

We are now ready to prove the existence of solutions to the Dirichlet problem

∆u(x) = 0 in Ω
u(x) = g(x) on ∂Ω.

(2.1)

The idea of the proof is to consider the largest subharmonic function that is
smaller than g on ∂Ω. If a solution to (2.1) exists then, by the maximum
principle, that solution has to be the largest subharmonic function that is less
than or equal to g on ∂Ω. This gives some hope that the largest sub-harmonic
function should be the solution to (2.1).

Before we prove that the largest sub-harmonic function is harmonic we need
to prove a Lemma that shows us that we can change a sub-harmonic function
into a harmonic function in part of the domain without destroying the sub-
harmonicity.

Lemma 1. Suppose that v ∈ C(Ω) is sub-harmonic in Ω. Moreover, we assume
that Br0(x0) ⊂ Ω. If we define ṽ to by the harmonic replacement of v in Br0(x0):

ṽ(x) =

{
v(x) if x ∈ Ω \Br0(x0)∫
∂Br0 (x0)

r2−|x−x0|2
ωnr

1
|x−x0−y|n v(y)dA∂Br0 (x0)(y) for x ∈ Br0(x0).

Then ṽ is sub-harmonic in Ω.

Remark: We say that ṽ is defined by the harmonic replacement in Br0(x0).
This language usage is natural since ṽ equals v outside of Br0(x0) and is defined
by Poisson’s formula in Br0(x0). We know that functions defined by Poisson’s
formula are harmonic so ṽ is defined by replacing the values of v by the harmonic
function with boundary data v in Br0(x0).

At times the harmonic replacement is referred to as the harmonic lifting in
Br0(x0). The reason for that terminology is that, by the maximum principle,

9



10 CHAPTER 2. EXISTENCE OF SOLUTIONS.

ṽ ≥ v in Br0(x0). So ṽ is defined by increasing, or lifting, the values of v in
Br0(x0).

Proof: Since ṽ is defined by Poisson’s formula in Br(x
0) it follows that ṽ

is harmonic in Br0(x0). Since ṽ is harmonic in Br0(x0) it follows that ṽ is
sub-harmonic in Br0(x0).

Also ṽ = v in Ω \Br0(x0) so ṽ is sub-harmonic in Ω \Br0(x0).
This does not imply that ṽ is sub-harmonic in Ω. We need to show that ṽ

satisfies the sub-meanvalue property for every ball Br0(y) ⊂ Ω.
To that end we fix an arbitrary ball Br(y) ⊂ Ω. If Br(y) ⊂ Ω \ Br0(x0)

then ṽ satisfies the sub-meanvalue property for the ball Br(y) since ṽ = v in
Br(y). Similarly, if Br(y) ⊂ Br0(x0) then ṽ satisfies the sub-meanvalue property
(and even the mean value property) for the ball Br(y) since ṽ is harmonic in
Br(y) ⊂ Br0(x0).

We therefore only need to prove that ṽ satisfies the sub-meanvalue property
for balls Br(y) ⊂ Ω such that Br(y)∩Br0(x0) 6= ∅ and Br(y)∩

(
Ω\Br0(x0)

)
6= ∅.

Fix such a ball Br(y). We continue the proof in several steps.
Step 1: Let h̃ be the harmonic function in Br(y) with h̃(x) = ṽ(x) on

∂Br(y). We claim that h̃ ≥ ṽ in Br(y) \Br0(x0).
Notice that v− ṽ is sub-harmonic in Br0(x0) and that v− ṽ = 0 on ∂Br0(x0).

So by the maximum principle for sub-harmonic functions v ≤ ṽ in Br0(x0).
Also, if we let h solve

∆h = 0 in Br(y)
h = v on ∂Br(y),

then again, by the sub-harmonicity of v and the maximum principle v ≤ h in
Br(y).

Since v ≤ ṽ we have that h ≤ h̃ on ∂Br(y) and since both h and h̃ are
harmonic it follows that h̃ ≥ h in Br(y). That is v ≤ h ≤ h̃ in Br(y).

Using that ṽ = v in Br(y) \Br0(x0) the claim in step 1 follows.

Step 2: Let, as in step 1, h̃ be the harmonic function in Br(y) with h̃(x) =
ṽ(x) on ∂Br(y). We claim that h̃ ≥ ṽ in Br(y) ∩Br0(x0).

By step 1 we know that h̃ ≥ ṽ inBr(y)\Br0(x0). Since ṽ and h̃ are continuous
functions it follows that h̃ ≥ ṽ on

(
∂Br0(x0)

)
∩ Br(y). On

(
∂Br(y)

)
∩ Br0(x0)

we have that h̃ = ṽ by the definition of h̃.
In particular, ∆ṽ = ∆h̃ = 0 in Br0(x0) ∩ Br(y) and ṽ ≤ h̃ on ∂

(
Br0(x0) ∩

Br(y)
)
. It follows that w = ṽ − h̃ solves

∆w = 0 in Br0(x0) ∩Br(y)
w ≤ 0 on ∂

(
Br0(x0) ∩Br(y)

)
.

By the maximum principle w ≤ 0 in Br0(x0)∩Br(y), that is ṽ ≤ h̃ in Br0(x0)∩
Br(y).



2.1. THE PERRON METHOD. 11

Step 3: ṽ satisfies the sub-meanvalue property in Ω.

Pick any ball Br(y) ⊂ Ω. If Br(y) ∩ Br0(x0) = ∅ we have already shown
that ṽ satisfies the sub-meanvalue property in Br(y). So we may assume that
Br(y) ∩Br0(x0) 6= ∅.

Define h̃ as in step 1 and 2, then

ṽ(y) ≤ h(y) =
1

ωnrn−1

∫
∂Br(y)

h̃(z)dA∂Br(y)(z) =
1

ωnrn−1

∫
∂Br(y)

ṽ(z)dA∂Br(y)(z),

(2.2)

=
1

ωnrn−1

∫
∂Br(y)

ṽ(z)dA∂Br(y)(z),

where we have used step 1 if y ∈ Br(y)\Br0(x0) and step 2 if y ∈ Br(y)∩Br0(x0)
in the first inequality, the meanvalue property for the harmonic function h in
and finally that h̃ = ṽ on ∂Br(y).

Notice that (2.2) is nothing by the sub-meanvalue property for ṽ.
We have thus shown that ṽ satisfies the sub-meanvalue property in Ω and is

thus sub-harmonic.

Definition 2. Let g ∈ C(∂Ω) where Ω is a bounded domain. We define Sg(Ω)
to be the class of sub-harmonic functions v ∈ C(Ω) such that v(x) ≤ g(x) on
∂Ω. That is

Sg(Ω) =
{
v ∈ C(Ω); v is sub-harmonic in Ω and v(x) ≤ g(x) on ∂Ω

}
.

Since g ∈ C(∂Ω) it follows that the constant infx∈∂Ω g(x) ∈ Sg(Ω). That is
Sg(Ω) 6= ∅.

The first part of the existence theorem is:

Theorem 3. [Perron’s Method.] Suppose that Ω is a bounded domain and
g(x) ∈ C(∂Ω). Define

u(x) = sup
v∈Sg(Ω)

v(x).

Then u(x) is harmonic in Ω.

Proof: As we remarked before Sg(∂Ω) 6= ∅. Also by the maximum principle
for sub-harmonic functions we have

sup
x∈Ω

(
v(x)− sup

y∈∂Ω
g(y)

)
≤ sup
x∈∂Ω

(
v(x)− sup

y∈∂Ω
(g(y))

)
= sup
x∈∂Ω

(
v(x)

)
− sup
y∈∂Ω

g(y) ≤ 0

for every v ∈ Sg(Ω) since if v ∈ Sg(Ω) then v is sub-harmonic and v ≤ g on ∂Ω.
It follows that

sup
v∈Sg(Ω)

v(x) ≤ sup
y∈∂Ω

g(y).

Using that a non-empty set of real numbers that is bounded from above has
a supremum (the completeness property of R) we may conclude that u(x) =
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supv∈Sg(Ω) v(x) is well defined. Moreover, for every x ∈ Ω we can find a sequence

{vk}∞k=1 in Sg(Ω) so u(x) = limk→∞ vk(x). We fix an arbitrary x0 ∈ Ω and
sequence {vk}∞k=1 such that limk→∞ vk(x0) = u(x0). Since Ω is a domain, in
particular Ω is open, there exist an r > 0 such that Br(x

0) ⊂ Ω.
We may assume that

vk ≥ inf
x∈∂Ω

g(x). (2.3)

If (2.3) where not true then we could consider the sequence max
(
vk(x), infx∈∂Ω g(x)

)
∈

Sg(Ω) instead.
In order to proceed we define the harmonic replacement of vk in Br(x

0)
according to

ṽk(x) =

{
vk(x) if x /∈ Br(x0)∫
∂Br(x0)

r2−|x−x0|2
ωnr

1
|x−x0−y|n v

k(y)dA∂Br(x0)(y) for x ∈ Br(x0).

Notice that ṽk is defined by the Poisson integral in Br(x
0). It follows that

∆ṽk(x) = 0 in Br(x
0)

ṽk(x) = vk(x) on ∂Br(x
0).

By Lemma 1 it follows that ṽk is sub-harmonic in Ω and since ṽk = vk ≤ g
on ∂Ω it follows that ṽk ∈ Sg(Ω).

Moreover, since vk is sub-harmonic and ṽk is harmonic in Br(x
0) and ṽk = vk

on ∂Br(x
0) we can conclude that ṽk ≥ vk in Br(x

0). Also u(x0) ≥ ṽk(x0) since
ṽk ∈ Sg(Ω).

It follows that

u(x0) = lim
k→∞

vk(x0) ≤ lim
k→∞

ṽk(x0) ≤ u(x0),

so ṽk(x0)→ u(x0).
From the compactness Lemma 1 we know that there exist a sub-sequence

{ṽkj}∞j=1 of {ṽk}∞k=1 such that ṽkj → ṽ0 uniformly on compact sets in Br(x
0)

and that ṽ0 is harmonic in Br(x
0).We claim that ṽkj (x) → u(x) uniformly on

compact sets in Br(x
0).

By the definition of u it follows that u ≥ ṽ0 in Br(x
0).

Claim: We claim that u(x) = ṽ0(x) for all x ∈ Br(x0). Since x0 i arbitrary
this implies that ∆u(x) = 0 in any ball Bs(y) ⊂ Ω and finishes the proof of the
theorem.

We prove this claim by an argument of contradiction. Aiming for a contra-
diction we assume that there exist a z ∈ Br(x0) such that ṽ0(z) < u(z). Since
u(z) = supw∈Sg(Ω) w(z) there exist a w ∈ Sg(Ω) such that ṽ0(z) < w(z).

We define wj = sup(w, ṽkj ). Then wj is sub-harmonic since w and ṽkj are
sub-harmonic.

We also define the harmonic lifting of wj according to

w̃j(x) =

{
wj(x) if x /∈ Br(x0)∫
∂Br(x0)

r2−|x−x0|2
ωnr

1
|x−x0−y|nw

j(y)dA∂Br(x0)(y) for x ∈ Br(x0)
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Arguing as before, using the maximum principle, we see that w̃j ≥ wj . Notice
that

w̃j ≥ wj = sup(w, ṽkj ) ≥ ṽkj . (2.4)

Using Lemma 1 again we can extract a sub-sequence {w̃jl}∞l=1 of {w̃j}∞j=1 such

that {w̃jl}∞l=1 converges uniformly on compact sets to some harmonic function
w̃0. Notice that

w̃0(z) = lim
l→∞

w̃jl(z) ≥ lim
l→∞

wjl(z) = lim
l→∞

sup(w(z), ṽkjl (z)) = w(z). (2.5)

In particular this imples that

w̃0(z) > ṽ0(z). (2.6)

Also, since
u(x0) ≥ w̃jl(x0) ≥ ṽkjl (x0)→ u(x0)

we get that w̃0(x0) = u(x0). Using (2.4), (2.5) and that w̃0(x0) = ṽ0(x0) =
u(x0) we get

∆(ṽ0(x)− w̃0(x)) = 0 in Br(x
0)

ṽ0(x)− w̃0(x) ≤ 0 on ∂Br(x
0)

ṽ0(x0)− w̃0(x0) = 0.

From the last two lines and the strong maximum principle we can conclude that
ṽ0(x)− w̃0 = 0 in Br(x

0). This contradicts (2.6).
We have thus finished our contradiction argument and proved that ṽkj → u0

uniformly on compact sets in Br(x
0). But limj→∞ ṽkj = ṽ0 where ∆ṽ0 = 0 in

Br(x
0). It follows that ∆u(x) = 0 in Br(x

0). But x0 ∈ Ω was arbitrary so we
may conclude that ∆u(x) = 0 in Ω.

2.2 Attaining the Boundary Data.

In the previous section we showed that

u(x) = sup
v∈Sg(Ω)

v(x)

is harmonic in Ω. This is not enough in order to show existence of solutions to
the Dirichlet problem

∆u(x) = 0 in Ω
u(x) = g(x) on ∂Ω.

Perron’s method gives a harmonic function but it does not prove that the har-
monic function actually attain the boundary values u(x) = g(x). In order to
solve the Dirichlet problem we need to show that the solution attained from the
Perron process actually satisfy the boundary data.

We will show that, at least in some cases, by the method of using barriers.
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Definition 3. Let Ω be a domain and ξ ∈ ∂Ω. We say that w is a barrier at ξ
relative to Ω if

1. w ∈ C(Ω),

2. w > 0 in Ω \ {ξ}, w(ξ) = 0 and

3. w is super-harmonic in Ω.

If Ω is a domain and there exist a barrier at ξ relatively to Ω then we say
that ξ is a regular point of ∂Ω.

Theorem 4. Let Ω be a bounded domain and g ∈ C(∂Ω). Furthermore let

u(x) = sup
v∈Sg(Ω)

v(x).

If ξ is a regular point of ∂Ω then

lim
x→ξ

u(x) = g(ξ).

Proof: We need to find, for each ε > 0, a δε > 0 such that

sup
x∈Bδε (ξ)∩Ω

|u(x)− g(ξ)| < ε.

Since g ∈ C(∂Ω) there exist an δg,ε/2 such that

sup
x∈∂Ω∩Bδg,ε/2 (ξ)

|g(x)− g(ξ)| < ε

2
.

Let w be a barrier at ξ and define

κ = inf
x∈∂Ω\Bδg,ε/2 (ξ)

w(x).

Using that w > 0 in Ω \ {ξ}, ∂Ω is compact and w ∈ C(Ω) we see that κ > 0.
If we define

k =
1

κ
sup
x∈∂Ω

|g(x)− g(ξ)|

then it follows that

− ε
2
− kw(x) ≤ g(x)− g(ξ) ≤ ε

2
+ kw(x). (2.7)

We know that w ∈ C(Ω) and w(ξ) = 0 so there is a δw,ε/(2k) such that

sup
x∈Bδw,ε/(2k) (ξ)

|w(x)| < ε

2k
. (2.8)
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Since w is super-harmonic it follows from the comparison principle and (2.7)
that

v(x) ≤ g(ξ) +
ε

2
+ kw(x) (2.9)

for every v ∈ Sg(Ω).
From (2.9) it follows that

u(x) ≤ g(ξ) +
ε

2
+ kw(x). (2.10)

Since w is super-harmonic it follows that g(ξ)− ε
2 − kw(x) is sub-harmonic

so by (2.7) it follows that − ε
2 − kw(x) ∈ Sg(Ω). In particular

u(x) ≥ g(ξ)− ε

2
− kw(x). (2.11)

From (2.10) and (2.11) we deduce that

|u(x)− g(ξ)| ≤ ε

2
+ kw(x). (2.12)

Finally we see that if δ < δw,ε/2k and x ∈ Bδ(ξ) ∩ Ω then, from (2.12) we
may estimate

|u(x)− g(ξ)| ≤ | ε
2

+ kw(x)| < ε

2
+
kε

2k
= ε

where we used (2.8) in the strict inequality. This proves the Theorem.
We are now in the position to create harmonic functions by the Perron

method and we also have a criteria to assure that the function so created satisfies
the boundary values.

The criteria that assures that the Perron solution assumes the boundary data
at ξ ∈ ∂Ω is that there exists a barrier at ξ relative to Ω. Since the definition
of a barrier is rather abstract we need to develop some adequate theory for the
existence of barriers.

The simplest condition that assures the existence of a barrier is the exterior
ball condition.

Definition 4. Let Ω be a domain. We say that Ω satisfies the exterior ball
condition at ξ if there exist a ball Bs(y

ξ) ⊂ Ωc such that ξ ∈ Bs(yξ) ∩ Ω
We say that the domain Ω satisfies the exterior ball condition if Ω satisfies

the exterior ball condition at every ξ ∈ ∂Ω.
We say that that the domain Ω satisfies the exterior ball condition uniformly

if Ω satisfies the exterior ball condition at every ξ ∈ ∂Ω and the radius of the
touching balls have radius s > 0 independent of ξ.

Lemma 2. Let Ω be a bounded domain and assume that Ω satisfies the exterior
ball condition at ξ ∈ ∂Ω.

Then ξ is a regular point of ∂Ω. That is there exist a barrier at ξ relatively
to Ω.



16 CHAPTER 2. EXISTENCE OF SOLUTIONS.

Proof: Let the touching ball at ξ be Bs(y). We define the the following
function that is zero on ∂Bs/2((ξ + y)/2)

w(x) =

 ln
∣∣∣x− y+ξ

2

∣∣∣− ln
(
s
2

)
if n = 2

2n−2

sn−2 − 1

|x− y+ξ2 |n−2 if n ≥ 3.

Since w is a multiple of the Newtonian potential plus a constant it is clear that
∆w(x) = 0 in Rn \ {(y − ξ)/2}.

Notice that Bs/2((ξ + y)/2) touches ∂Ω at only the point ξ ∈ ∂Ω. The
original ball Bs(y) might touch at a larger set.

Moreover w(x) = 0 on ∂Bs/2((y + ξ)/2), w > 0 in Rn \ Bs/2((y + ξ)/2).

Finally notice that ξ ∈ ∂Bs/2((yξ − ξ)/2) so w(ξ) = 0. It follows that w is a
barrier.

A somewhat stronger sufficient (but not necessary) condition for a the exis-
tence of a barrier is the exterior cone condition.

Definition 5. Let Ω be a domain. We say that Ω satisfies the exterior cone
condition at ξ relative to Br(ξ) if Ωc ∩ Br(ξ) contains a circular cone. That is
if there exist a κ > 0 and a unit vector η such that

{x ∈ Br(ξ); η · (x− ξ) > 0 and |x− η · (x− ξ)| < κ|x− ξ|} ⊂ Ωc.

We say that the domain Ω satisfies the exterior cone condition if Ω satisfies
the exterior cone condition at every ξ ∈ ∂Ω with respect to some ball Brξ(ξ) and
rξ > 0 and some κξ > 0.

We say that that the domain Ω satisfies the exterior cone condition uniformly
if Ω satisfies the exterior cone condition at every ξ ∈ ∂Ω with respect to some
ball Br(ξ) and r > 0 and some κ > 0 where r and κ is independent of ξ.

Proposition 1. Let Ω be a bounded domain and assume that Ω satisfies the
exterior cone condition at ξ ∈ ∂Ω.

The ξ is a regular point of ∂Ω. That is there exist a barrier at ξ relatively
to Ω.

Proof (only in R2 and R3 (sort of)): There is no loss of generality to assume
that ξ = 0. If ξ 6= 0 we may simply translate the coordinate system by the
translation x→ x− ξ to attain this situation.

By assumption there exist a unit vector η and r, κ > 0 such that

Kκ = {x ∈ Bs(0); η · x > 0 and |x− η · x| < κ|x|} ⊂ Ωc.

By rotation the coordinate system we may assume that η = en.
Proof in R2: If we change to polar coordinates x1 = r sin(φ) and x2 =

r cos(φ) then the cone becomes

Kκ = {(r, φ); | sin(φ)| < κ, sin(φ) > 0}.



2.2. ATTAINING THE BOUNDARY DATA. 17

Recalling that Laplace’s equation in polar coordinates is

∆w(r, φ) =
∂2w(r, φ)

∂r2
+

1

r

∂w(r, φ)

∂r
+

1

r2

∂2w(r, φ)

∂φ2
= 0

it is easy to verify that

w(r, φ) =
√
r sin

(
φ

2

)
is harmonic in R2 \K and w(r, φ) =

√
rκ > 0 on ∂K. So w(r, φ) is a barrier at

ξ = 0 relative to Ω.

Sketch of the proof in Proof in R3: Laplace equation in spherical coor-
dinates, (x1, x2, x3) = r(sin(ψ) cos(φ), sin(ψ) sin(φ), cos(ψ), is

∂2w(r, φ, ψ)

∂r2
+

2

r

∂w(r, φ, ψ)

∂r
+

1

r2 sin(ψ)

∂

∂ψ

(
sin(ψ)

∂w(r, φ, ψ)

∂ψ

)
+

+
1

r2 sin2(ψ)

∂2w(r, φ, ψ)

∂φ2
= 0.

To simplify the expression somewhat we assume that we can find a solution
w(r, φ, ψ) = rαw̃(ψ) that is independent of φ and homogeneous in r. Taking
into consideration that we also want our barrier to be zero on ∂Kκ/2 we end up
with the following ordinary differential equation

rα−2
(
α(α+ 1)w̃(r, ψ) + 1

sin(ψ)
∂
∂ψ

(
sin(ψ)∂w̃(r,ψ)

∂ψ

))
= 0 in Kκ/2

w̃(r, ψ) = 0 on ∂Kκ/2.

It turns out that this ordinary differential equation is solvable and that there
exists a unique ακ > 0 such that the solution is positive in R3 \Kκ. It follows
that w(r, φ, ψ) = rακw̃(r, φ, ψ).

Knowing that we have barriers in some cases it is natural to ask the question
if we always have barriers. The answer to that is: No.

Example of a non-regular point: Consider the domain Ω = B1(0) \ {0},
for simplicity we assume that n ≥ 3. We want to solve the Dirichlet problem

∆u(x) = 0 in Ω
u(x) = g(x) on ∂Ω

where
g(x) = 0 on Ω \ {0}
g(0) = −1.

By the Perron method we would want to construct the solution

u(x) = sup
v∈Sg(Ω)

v(x).
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Notice that for any j ∈ N

wj(x) = max

(
−1

j

1

|x|n−2
,−1

)
∈ Sg(Ω).

In particular, wj is the supremum of two harmonic functions and is thus sub-
harmonic. Also both − 1

j
1

|x|n−2 and −1 are less than g on ∂Ω. Since wj ∈ Sg(Ω)

we have
u(x) ≥ wj(x)

for all j ∈ N. But wj(x) → 0 as j → ∞ for every x ∈ Ω. This implies that
u(x) ≥ 0. But the maximum principle implies that u(x) ≤ supx∈∂Ω g(x) = 0.
That is u(x) = 0. So limx→0 u(x) = 0 6= −1 = g(0) and therefore there is no
barrier at ξ = 0.

In general we have a barrier at ξ if the complement on Ω is “large” close to
ξ. In the above example the complement of Ω near the origin consists of just
one point and that is why we do not have a barrier at the origin.

2.3 Existence of Solutions to the Dirichlet Prob-
lem.

We can now prove our first general existence Theorem for the Dirichlet problem.

Theorem 5. Let Ω be a bounded domain that satisfies the exterior cone con-
dition. Moreover, assume that f ∈ C2

c (Rn) and g ∈ C(∂Ω).Then there exists a
unique solution to

∆u(x) = f(x) in Ω
u(x) = g(x) on ∂Ω.

(2.13)

Proof: We know that, if N is the Newtonian potential then

v(x) =

∫
Rn
N(x− y)f(y)dy

solves ∆v(x) = f(x) in Rn. It is therefore enough to show that there exist a
solution to

∆w(x) = 0 in Ω
w(x) = g̃(x) = g(x)− v(x) on ∂Ω,

(2.14)

since then u(x) = v(x) + w(x) would be a solution to (2.13).
By the Perron process we can find a harmonic function

w(x) = sup
h∈Sg̃(Ω)

h(x) (2.15)

and since every point in ∂Ω is regular it follows from Theorem 4 that limx→ξ w(x) =
g̃(ξ) for any ξ ∈ ∂Ω. It follows that the function defined by (2.15) solves the
boundary value problem (2.14).



2.3. EXISTENCE OF SOLUTIONS TO THE DIRICHLET PROBLEM. 19

Uniqueness is an easy consequence of the maximum principle. In particular
if u1 and u2 are two solutions to (2.13) then u1(x)−u2(x) is a harmonic function
with zero boundary data in Ω. From the maximum principle we can deduce that
u1(x)− u2(x) = 0, that is u1 = u2.
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Chapter 3

Exercises:

Exercise 1. Let g ∈ C(∂Ω) where Ω is a bounded domain. Define the Perron
solution

u(x) = sup
v∈Sg(Ω)

v(x).

Assume that u is sub-harmonic and prove that ∆u(x) = 0 in Ω.

(Hint: Consider the harmonic replacement ũ in some ball Br(x) ⊂ Ω. Use
comparison to conclude that ũ ≥ u, how does that relate to the definition of u?)

Remark: The above proof is much simpler than the one we gave during
the lectures. The reason that we did not use that proof is that in order to
show that u is sub-harmonic one need to show that u is integrable. That is
to show that the supremum of an uncountable family of integrable functions is
integrable. That requires measure theory (and also a slightly different definition
of subharmonicity) which we do not assume for this course.

Exercise 2. Let Ω = B1(0) \ {x ∈ R3; x1 = x2 = 0} be the unit ball in R3

minus the x3−axis. Show that the origin is not a regular point with respect to
Ω.

(Hint: How did we prove that the origin was not regular with respect to the
punctured disk B1(0) \ {0} in R2? What is the relation between the punctured
disk in R2 and Ω?)

Exercise 3. We say that u ∈ C(Ω) is a viscosity solution to ∆u(x) = 0 in Ω if
for any second order polynomial p(x) the following holds:

1. if u(x)− p(x) has a local maximum at x0 then ∆p(x) ≤ 0 and

2. if u(x)− p(x) has a local minimum at x0 then ∆p(x) ≥ 0.

Prove that if u ∈ C2(Ω) is harmonic then u is a viscosity solution to ∆u(x) = 0.
Prove that if u ∈ C2(Ω) is a viscosity solution to ∆u(x) = 0 then u(x) is
harmonic.

21
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(Hint: Assume that 1 or 2 holds at a point x0 ∈ Ω what is the second order
Taylor expansion at x0?)

Exercise 4. Assume that u ∈ C2(Ω) is a solution to the following partial
differential equation

∆u(x) = u(x) in Ω
u(x) = 0 on ∂Ω.

Prove that u(x) = 0 in Ω.

Exercise 5. Prove that any convex function is subharmonic.


