Selected Topics in PDE part 5.

John Andersson johnan@kth.se

November 3, 2014

Contents

1 Variable coefficients. 1
1.1 The maximum Principle for Elliptic PDE. 3

2 Apriori estimates. 7
2.1 Discussion. 7
2.2 Interior Aproiri Estimates for the Laplacian. 8
2.2.1 An application. 16

Chapter 1

Variable coefficients.

So far we have been able to show existence for solutions to the Dirichlet problem for Laplace equation. It is of some interest to generalize that result to more general equations. We will consider the following general elliptic second order PDE,

$$
\begin{array}{lc}
\sum_{i, j=1}^{n} a_{i j}(x) \frac{\partial^{2} u(x)}{\partial x_{i} \partial x_{j}}+\sum_{i=1}^{n} b_{i}(x) \frac{\partial u(x)}{\partial x_{i}}+c(x) u(x)=f(x) & \text { in } \Omega \tag{1.1}\\
u(x)=g(x) & \text { on } \partial \Omega
\end{array}
$$

where Ω is some bounded domain, $g \in C(\partial \Omega), a_{i j}(x), b_{i}(x), c(x)$ and $f(x)$ are given functions.

Equation (1.1) is to general for us to be able to say anything specific about the solution $u(x)$. We need to impose some conditions on $a_{i j}(x), b_{i}(x)$ and $c(x)$ to assure that the solutions are "well behaved".

A powerful tool we used in the solution of the Laplace equation was the maximum principle. To assure that solutions $u(x)$ to (1.1) satisfy the maximum principle we make the following definition.

Definition 1. We say that an partial differential, equation defined a domain Ω,

$$
\sum_{i, j=1}^{n} a_{i j}(x) \frac{\partial^{2} u(x)}{\partial x_{i} \partial x_{j}}+\sum_{i=1}^{n} b_{i}(x) \frac{\partial u(x)}{\partial x_{i}}+c(x) u(x)=f(x)
$$

is strictly elliptic in Ω if there exists a constant $\lambda>0$ such that for all $x \in \Omega$

$$
\sum_{i, j=1}^{n} a_{i j}(x) \xi_{i} \xi_{j} \geq \lambda|\xi|^{2}
$$

for any vector $\xi=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right)$.
Remark: If we let A be the matrix with coefficients $a_{i j}(x)$ then the ellip-
ticity condition say that

$$
\left[\begin{array}{llll}
\xi_{1} & \xi_{2} & \cdots & \xi_{n}
\end{array}\right]\left[\begin{array}{llll}
a_{11}(x) & a_{12}(x) & \cdots & a_{1 n}(x) \\
a_{21}(x) & a_{22}(x) & \cdots & a_{2 n}(x) \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1}(x) & \cdots & & a_{n n}(x)
\end{array}\right]\left[\begin{array}{l}
\xi_{1} \\
\xi_{2} \\
\vdots \\
\xi_{n}
\end{array}\right] \geq \lambda|\xi|^{2} .
$$

This is the same as demanding that all (generalized) eigenvalues ${ }^{1}$ of A are greater than λ.

One might ask what ellipticity has to do with the maximum principle. A simple example will suffice to show that ellipticity is related to the maximum principle.

Example: Let Ω be a bounded domain, $\epsilon>0$ and $u(x) \in C^{2}(\Omega) \cap C(\Omega)$ be a solution to

$$
\sum_{i, j=1}^{n} a_{i j}(x) \frac{\partial^{2} u(x)}{\partial x_{i} \partial x_{j}}+\sum_{i=1}^{n} b_{i}(x) \frac{\partial u(x)}{\partial x_{i}}+c(x) u(x)=\epsilon \quad \text { in } \Omega
$$

Assume furthermore, for simplicity, that $a_{i i}(x)=a_{i}(x)$ and $a_{i j}(x)=0$ for $i \neq j$, $a_{i i}(x) \geq 1$ (that is the PDE is elliptic with $\lambda=1$) and that $c(x) \leq 0$. Then $u(x)$ does not have any non-negative interior maximum.

This is quite obvious. We argue by contradiction and assume that $u(x)$ has an interior non-negative maximum at $x^{0} \in \Omega$. Then $\nabla u\left(x^{0}\right)=0$ and $\frac{\partial^{2} u\left(x^{0}\right)}{\partial x_{i}^{2}} \leq 0$. We can thus calculate

$$
0<\epsilon=\underbrace{\sum_{i=1}^{n} a_{i i}\left(x^{0}\right) \frac{\partial^{2} u\left(x^{0}\right)}{\partial x_{i}^{2}}}_{\leq 0}+\underbrace{\sum_{i=1}^{n} b_{i}\left(x^{0}\right) \frac{\partial u\left(x^{0}\right)}{\partial x_{i}}}_{=0 \text { since } \nabla u=0}+\underbrace{c\left(x^{0}\right) u\left(x^{0}\right)}_{\leq 0} \leq 0
$$

where we used that $a_{i i}\left(x^{0}\right) \geq 1$, and $c(x) \leq 0$ by assumption and that $u\left(x^{0}\right) \geq 0$ since x^{0} is the non-negative maximum. Clearly this is a contradiction. In particular, elliptic PDE with $c(x) \leq 0$ seems to satisfy a maximum principle.

Remark on different kinds of PDE: We will only study elliptic PDE in this course. However, there are other classes of important PDE that appears in the applied sciences. Besides elliptic the most important classes of PDE are parabolic and hyperbolic.

The heat equation,

$$
\Delta u(x, t)-\frac{\partial u(x, t)}{\partial t}=0
$$

is the archetypical parabolic equation. A parabolic equation is, more or less, an elliptic equation minus a time derivative.

[^0]The third important class of equations is represented by the wave equation

$$
\Delta u(x, t)-\frac{\partial^{2} u(x, t)}{\partial t^{2}}=0
$$

The wave equation is the basic representative of the hyperbolic PDE.
Of the three classes of PDE one can say that elliptic and parabolic are the most similar. Most of the results for elliptic PDE also exist for parabolic PDE. For instance the maximum principle (suitably interpreted) and the regularity theory that we develop also exist for parabolic PDE. However, one needs to formulate the problems and results slightly different for parabolic PDE since the PDE has a time variable t. We will not discuss parabolic or hyperbolic equations in this course.

1.1 The maximum Principle for Elliptic PDE.

For simplicity we will write, for any $u \in C^{2}(\Omega)$

$$
\begin{equation*}
L u(x)=\sum_{i, j=1}^{n} a_{i j}(x) \frac{\partial^{2} u(x)}{\partial x_{i} \partial x_{j}}+\sum_{i=1}^{n} b_{i}(x) \frac{\partial u(x)}{\partial x_{i}}+c(x) u(x) \quad \text { in } \Omega \tag{1.2}
\end{equation*}
$$

where L is an elliptic operator, $a_{i j}(x), b_{i}(x), c(x) \in C(\Omega)$.
Lemma 1. [The Weak maximum principle.] Suppose that $u \in C^{2}(\Omega)$, where Ω is a bounded domain, and $L u(x)=f(x)$ where $f(x) \in C(\Omega)$. Assume that

1. $c(x) \leq 0$ and $f(x)>0$ or
2. $c(x)<0$ and $f(x) \geq 0$.

The $u(x)$ does not achieve a positive local maximum in Ω.
In particular, if $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ then

$$
\sup _{\Omega} u(x)=\sup _{\partial \Omega} u(x)
$$

Proof: The proof is very similar to the example in the previous section. We argue by contradiction and assume that $u\left(x^{0}\right)>0$ and that x^{0} is a local maximum for $u(x)$. Then

$$
\begin{aligned}
\sum_{i, j=1}^{n} a_{i j}(x) & \frac{\partial^{2} u(x)}{\partial x_{i} \partial x_{j}}+\sum_{i=1}^{n} b_{i}(x) \frac{\partial u(x)}{\partial x_{i}}= \\
= & \underbrace{-c(x) u(x)+f(x)}_{>0 \text { at } x^{0}}
\end{aligned}
$$

Since $u\left(x^{0}\right)$ is a local maximum we can conclude that $\nabla u\left(x^{0}\right)=0$ and $D^{2} u\left(x^{0}\right)$ is a non-positive matrix.

In particular,

$$
\begin{equation*}
0<\sum_{i, j=1}^{n} a_{i j}\left(x^{0}\right) \frac{\partial^{2} u\left(x^{0}\right)}{\partial x_{i} \partial x_{j}}+\underbrace{\sum_{i=1}^{n} b_{i}\left(x^{0}\right) \frac{\partial u\left(x^{0}\right)}{\partial x_{i}}}_{=0}=\sum_{i, j=1}^{n} a_{i j}\left(x^{0}\right) \frac{\partial^{2} u\left(x^{0}\right)}{\partial x_{i} \partial x_{j}} \tag{1.3}
\end{equation*}
$$

If we can show that the right hand side in (1.3) is non positive we get the desired contradiction.

Since the matrix $A\left(x^{0}\right)=\left[a_{i j}\left(x^{0}\right)\right]_{i j}$ is strictly positive by ellipticity it has a square root \sqrt{A}. Also $-D^{2} u_{\epsilon}\left(x^{0}\right)$ is non-negative so it has a square root $\sqrt{-D^{2} u\left(x^{0}\right)}$. Now we notice that

$$
\begin{gathered}
\sum_{i, j=1}^{n} a_{i j}\left(x^{0}\right) \frac{\partial^{2} u\left(x^{0}\right)}{\partial x_{i} \partial x_{j}}=\operatorname{trace}\left(A \cdot D^{2} u\left(x^{0}\right)\right)= \\
=-\operatorname{trace}\left(A \cdot\left(-D^{2} u\left(x^{0}\right)\right)\right)=-\operatorname{trace}\left(\sqrt{A} \sqrt{A} \sqrt{-D^{2} u\left(x^{0}\right)} \sqrt{-D^{2} u\left(x^{0}\right)}\right)= \\
=-\operatorname{trace}\left(\left(\sqrt{A} \sqrt{-D^{2} u\left(x^{0}\right)}\right)^{T} \sqrt{A} \sqrt{-D^{2} u\left(x^{0}\right)}\right) \leq 0
\end{gathered}
$$

where we have used linear algebra freely and that the last inequality follows from $\operatorname{trace}\left(C^{T} \cdot C\right)=\sum_{i, j=1}^{n}\left(c_{i j}\right)^{2} \geq 0$ for any matrix C. This finishes the proof.
Corollary 1. [The Comparison Principle.] Let Ω be a bounded domain and $u, v \in C^{2}(\Omega) \cap C(\bar{\Omega})$ satisfy

$$
\begin{array}{ll}
L u(x) \geq L v(x) & \text { in } \Omega \\
u(x) \leq v(x) & \text { on } \partial \Omega
\end{array}
$$

Then, if $c(x) \leq 0$, it follows that $u(x) \leq v(x)$ in Ω.
Proof: The proof is simple, and follows directly from Lemma 1 if $L u(x)>$ $L v(x)$ since then $L(u-v)>0$ and can not archive a positive maximum.

We will modify the function $u-v$ by a function w to obtain the strict inequality and then use Lemma 1 to prove the Corollary.

To that end we define

$$
w(x)=e^{N r^{2}}-e^{N|x|^{2}}
$$

where r is chosen large enough that $w(x) \geq 0$ in Ω and N is to be determined later. Notice that

$$
\begin{align*}
& L w(x)=\sum_{i, j=1}^{n} a_{i j}(x)\left(-2 N \delta_{i j}-4 N^{2} x_{i} x_{j}\right) e^{N|x|^{2}}+ \tag{1.4}\\
& +\underbrace{\sum_{i=1}^{n} b_{i}(x)\left(-2 N x_{i}\right) e^{N|x|^{2}}}_{\leq 2 N e^{N|x|^{2}}|x| \sup _{\Omega}|b(x)|}+\underbrace{c(x)\left(e^{N r^{2}}-e^{N|x|^{2}}\right)}_{\leq 0} \leq
\end{align*}
$$

$$
\leq \sum_{i, j=1}^{n} a_{i j}(x)\left(-2 N \delta_{i j}-4 N^{2} x_{i} x_{j}\right) e^{N|x|^{2}}+2 N e^{N|x|^{2}}|x| \sup _{\Omega}|b(x)|
$$

where we used that $c(x) \leq 0$ and $w \geq 0$ in Ω. We need to estimate

$$
\begin{gather*}
\sum_{i, j=1}^{n} a_{i j}(x)\left(-2 N \delta_{i j}-4 N^{2} x_{i} x_{j}\right)=-2 N \sum_{i=1}^{n} a_{i i}(x)-4 N^{2} \sum_{i, j=1}^{n} a_{i j}(x) x_{i} x_{j} \leq \\
\leq-2 N \lambda-4 N^{2} \lambda|x|^{2} \tag{1.5}
\end{gather*}
$$

since the first sum is just the trace of A and the second sum can be estimated from below by $\lambda|x|^{2}$ by the definition of ellipticity with $\xi=x$.

Using (1.5) in the estimate (1.4) we can conclude that

$$
\begin{aligned}
& L w(x) \leq-4 N^{2} \lambda\left(\frac{1}{2 N}+|x|^{2}-\frac{|x| \sup _{\Omega}|b(x)|}{2 N \lambda}\right) e^{N|x|^{2}}= \\
= & -4 N^{2} \lambda(\underbrace{\left(|x|-\frac{B}{4 N \lambda}\right)^{2}}_{\geq 0}+\frac{1}{2 N}-\frac{1}{N^{2}}\left(\frac{B}{4 \lambda}\right)^{2}) e^{N|x|^{2}}<0,
\end{aligned}
$$

where the last inequality follows if N is large enough.
In particular $L w(x)<0$, so $w(x)$ is a super-solution.
Now consider

$$
h_{\epsilon}(x)=u(x)-v(x)-\epsilon w(x)
$$

Then

$$
\begin{array}{ll}
L h_{\epsilon}(x)>0 & \text { in } \Omega \\
h_{\epsilon}(x) \leq-\epsilon w(x) & \text { on } \partial \Omega
\end{array}
$$

We may conclude, from Lemma 1 , that h_{ϵ} can not obtain an interior maximum. Thus, for any $\epsilon>0$,

$$
\sup _{\Omega}(u(x)-v(x)-\epsilon w(x)) \leq \epsilon \sup _{\partial \Omega}(-w)
$$

If we let $\epsilon \rightarrow 0$ this implies that

$$
\sup _{\Omega}(u(x)-v(x)) \leq 0 \Rightarrow u(x) \leq v(x)
$$

Corollary 2. Let Ω be a bounded domain and $u, v \in C^{2}(\Omega) \cap C(\bar{\Omega})$ satisfy

$$
\begin{array}{ll}
L u(x)=L v(x) & \text { in } \Omega \\
u(x)=v(x) & \text { on } \partial \Omega .
\end{array}
$$

Then, if $c(x) \leq 0$, it follows that $u(x)=v(x)$ in Ω.
Proof: By the previous Corollary it follows that $u(x) \leq v(x)$ and $v(x) \leq u(x)$ in Ω.

Chapter 2

Apriori estimates.

We know that the solutions to

$$
\begin{array}{ll}
L u(x)=\sum_{i, j=1}^{n} a_{i j}(x) \frac{\partial^{2} u(x)}{\partial x_{i} \partial x_{j}}+\sum_{i=1}^{n} b_{i}(x) \frac{\partial u(x)}{\partial x_{i}}+c(x) u(x)=f(x) & \text { in } \Omega \\
u(x)=g(x) & \text { on } \partial \Omega \tag{2.1}
\end{array}
$$

are unique, if they exist. The difficult part is to prove existence. That will take considerable effort. We will start lay the foundations of the existence theory in this chapter. In the next section we will prove sketch a strategy of how to solve the problem. In particular, we will try to motivate the need for apriori estimates. Then we will prove the estimates for the Laplace equation. At the end of the chapter we will prove existence in a very basic case and use that basic case as a springboard for a continued discussion of the strategy.

2.1 Discussion.

We need to find an approach to analyze a very difficult equation. We are in particular interested in showing existence of solutions. One way to approach the problem is to first consider operators L that somehow are close to the Laplace equation - which we can solve. Let us consider

$$
L_{t} u(x)=\Delta u(x)+t(L-\Delta) u(x)
$$

then $L_{0}=\Delta$ and $L_{1}=L$ so, at least intuitively, $L_{t} \approx \Delta$ for small t and for $t=1$ we are back at the general case. If we assume that, for every small t, there exists a solution $u_{t}(x)$ to the following equation

$$
\begin{array}{lc}
L_{t} u_{t}(x)=f(x) & \text { in } \Omega \\
u_{t}(x)=g(x) & \text { on } \partial \Omega
\end{array}
$$

Then for t small we would expect $u_{t}(x) \approx u^{0}(x)+t u^{1}(x)$ for some functions $u^{0}(x)$ and $u^{1}(x)$. What equations would we have to solve to calculate u^{0} and
u^{1} ? If we set $t=0$ we get, since $L_{0} \cdot=\Delta \cdot$,

$$
\begin{array}{lc}
L_{0} u_{0}(x)=\Delta u^{0}(x) f(x) & \text { in } \Omega \\
u^{0}(x)=g(x) & \text { on } \partial \Omega
\end{array}
$$

which is fine since we know how to solve the Dirichlet problem for the Laplacian. However to calculate $u^{1}(x)$ we would need to solve, and here I am rather informal,

$$
f(x)=L_{t} u_{t}(x) \approx \Delta\left(u^{0}+t u^{1}\right)+t(L-\Delta)\left(u^{0}+t u^{1}\right) \approx \underbrace{\Delta u^{0}}_{=f(x)}+t\left(\Delta u^{1}+(L-\Delta) u^{0}\right)
$$

where we have disregarded terms of order t^{2}. We see that we need to solve

$$
\begin{equation*}
\Delta u^{1}(x)=(\Delta-L) u^{0}(x) \tag{2.2}
\end{equation*}
$$

Equation (2.2) is in principle fine since we can solve the Dirichlet problem and the right hand side is well defined. But we have only shown that $u^{0} \in C^{2}(\Omega)$ so the right hand side of (2.2) is, as far as we know, only continuous. But we need the right hand side to be C^{α} to solve (2.2).

In general, we will need to improve our regularity results so that $\Delta u(x)=$ $f(x) \in C^{\alpha}$ implies that $u \in C^{2, \alpha}$. We will prove this in the next section and also show that these estimates are strong enough to show existence in some simple cases.

2.2 Interior Aproiri Estimates for the Laplacian.

Sinc eour aim in this section is to estimate $\left|D^{2} u(x)-D^{2} u(y)\right|$ where $\Delta u(x)=$ $f(x)$ we need to have a better understanding of the Newtonian kernel which we will provide in the next lemma.

Lemma 2. Let $x, y \in \mathbb{R}^{n},|x-y|=r$ and

$$
N_{i j}(x)=\frac{\partial^{2} N(x)}{\partial x_{i} \partial x_{j}}
$$

be the second derivatives of the Newtonian kernel. Then,

$$
\left|N_{i j}(x-\xi)-N_{i j}(y-\xi)\right| \leq \frac{C|x-y|}{|x-\xi|^{n+1}}
$$

for any $\xi \in \mathbb{R}^{n} \backslash B_{2 r}(x)$.
Proof: Fix a $\xi \in \mathbb{R}^{n} \backslash B_{2 r}(x)$. Then $N(z-\xi) \in C^{\infty}\left(\mathbb{R}^{n} \backslash\{z=\xi\}\right)$. In particular, $N(z-\xi) \in C^{\infty}\left(B_{3 r / 2}(x)\right)$ so we may calculate

$$
\left|N_{i j}(x-\xi)-N_{i j}(y-\xi)\right|=\left|\int_{0}^{1}(x-y) \cdot \nabla N_{i j}(s x+(1-s) y-\xi) d s\right| \leq
$$

$$
\begin{equation*}
\leq|x-y| \sup _{z \in B_{r}(x)}\left|\nabla N_{i j}(z-\xi)\right| \tag{2.3}
\end{equation*}
$$

Next we notice that

$$
\sup _{z \in B_{r}(x)}\left|\nabla N_{i j}(z-\xi)\right| \leq \sup _{z \in B_{|\xi-x|+r}(0) \backslash B_{|\xi-x|-r}}\left|\nabla N_{i j}(z)\right| .
$$

But since

$$
N(z)=N(x)= \begin{cases}-\frac{1}{2 \pi} \ln (|x|) & \text { for } n=2 \\ -\frac{1}{(n-2) \omega_{n}} \frac{1}{|x|^{n-2}} & \text { for } n \neq 2\end{cases}
$$

It follows that

$$
\begin{equation*}
\sup _{z \in B_{|\xi-x|+r}(0) \backslash B_{|\xi-x|-r}}\left|\nabla N_{i j}(z)\right| \leq \frac{C_{n}}{(|\xi-x|-r)^{n+1}}, \tag{2.4}
\end{equation*}
$$

but if $\xi \in \mathbb{R}^{n} \backslash B_{2 r}(x)$ it clearly follows that

$$
|\xi-x|-r \geq \frac{1}{2}|\xi-x|
$$

from which we may conclude that

$$
\sup _{z \in B_{|\xi-x|+r}(0) \backslash B_{|\xi-x|-r}}\left|\nabla N_{i j}(z)\right| \leq \frac{C_{n} 2^{n}}{(|\xi-x|)^{n+1}}
$$

Using this last inequality together with (2.4) and (2.3) will result in

$$
\left|N_{i j}(x-\xi)-N_{i j}(y-\xi)\right| \leq \frac{C_{n} 2^{n}|x-y|}{(|\xi-x|)^{n+1}}
$$

which is the conclusion of the Lemma up to the naming of a constant.
Theorem 1. Let $f(x) \in C_{c}^{\alpha}\left(B_{2 R}(0)\right)$ for some $0<\alpha<1$ and define

$$
u(x)=\int_{\mathbb{R}^{n}} N(x-\xi) f(\xi) d \xi
$$

then for any $x, y \in B_{R}(0), x \neq y$, the following inequality holds

$$
\begin{equation*}
\frac{\left|\frac{\partial^{2} u(x)}{\partial x_{i} \partial x_{j}}-\frac{\partial^{2} u(y)}{\partial x_{i} \partial x_{j}}\right|}{|x-y|^{\alpha}} \leq C_{\alpha, n}\left([f]_{C^{\alpha}\left(B_{2 R}(0)\right)}+\frac{|x-y|^{1-\alpha} \sup _{B_{R}(0)}|f(x)|}{R}\right) \tag{2.5}
\end{equation*}
$$

In particular, $u \in C^{2, \alpha}\left(B_{R}(0)\right)$ and

$$
\left[D^{2} u\right]_{C^{\alpha}\left(B_{R}(0)\right.} \leq C_{\alpha, n}\left([f]_{C^{\alpha}\left(B_{2 R}(0)\right)}+\frac{\sup _{B_{R}(0)}|f(x)|}{R^{\alpha}}\right)
$$

where $C_{\alpha, n}$ only depends on the dimension and α.

Proof: We have already shown that $u(x) \in C^{2}$ and that

$$
\frac{\partial^{2} u(x)}{\partial x_{i} \partial x_{j}}=\int_{B_{2 R}(0)} \frac{\partial^{2} N(x-\xi)}{\partial x_{i} \partial x_{j}}(f(\xi)-f(x)) d \xi-f(x) \int_{\partial B_{2 R}(0)} \frac{\partial N(x-\xi)}{\partial x_{i}} \nu_{j}(\xi) d A(\xi)
$$

We will use this representation to prove (2.5). We set $r=|x-y|$ and calculate

$$
\begin{align*}
& \qquad\left|\frac{\partial^{2} u(x)}{\partial x_{i} \partial x_{j}}-\frac{\partial^{2} u(y)}{\partial x_{i} \partial x_{j}}\right| \leq \\
& \leq \mid \int_{B_{2 R}(0)} N_{i j}(x-\xi)(f(\xi)-f(x)) d \xi-f(x) \int_{\partial B_{2 R}(0)} N_{i}(x-\xi) \nu_{j} d A(\xi)- \\
& \quad-\int_{B_{2 R}(0)} N_{i j}(y-\xi)(f(\xi)-f(y)) d \xi+f(y) \int_{\partial B_{2 R}(0)} N_{i}(y-\xi) \nu_{j} d A(\xi) \mid \leq \\
& \leq\left|\int_{B_{2 r}(x)} N_{i j}(x-\xi)(f(\xi)-f(x)) d \xi\right|+\left|\int_{B_{2 r}(x)} N_{i j}(y-\xi)(f(\xi)-f(y)) d \xi\right|+ \\
& +\mid \int_{B_{2 R}(0) \backslash B_{2 r}(x)} N_{i j}(x-\xi)(f(\xi)-f(x)) d \xi+\int_{B_{2 R}(0) \backslash B_{2 r}(x)} N_{i j}(y-\xi)(f(\xi)-f(y)) d \xi+ \\
& \quad+f(x) \int_{\partial B_{2 R}(0)} N_{i}(x-\xi) \nu_{j} d A(\xi)-f(y) \int_{\partial B_{2 R}(0)} N_{i}(y-\xi) \nu_{j} d A(\xi) \mid \\
& \leq\left|\int_{B_{2 r}(x)} N_{i j}(x-\xi)(f(\xi)-f(x)) d \xi\right|+\left|\int_{B_{2 r}(y)} N_{i j}(y-\xi)(f(\xi)-f(y)) d \xi\right|+ \\
& \quad+\left|\int_{B_{2 R}(0) \backslash B_{2 r}(x)}\left(N_{i j}(x-\xi)-N_{i j}(y-\xi)\right)(f(\xi)-f(x)) d \xi\right|+ \tag{2.6}\\
& \quad+\mid \int_{B_{2 R}(0) \backslash B_{2 r}(x)} N_{i j}(y-\xi)(f(y)-f(x)) d \xi+ \\
& \quad-f(x) \int_{\partial B_{2 R}(0)} N_{i}(x-\xi) \nu_{j} d A(\xi)+f(y) \int_{\partial B_{2 R}(0)} N_{i}(y-\xi) \nu_{j} d A(\xi) \mid .
\end{align*}
$$

We will estimate the terms in turn. First we use that $|f(\xi)-f(x)| \leq[f]_{C^{\alpha}}|\xi-x|^{\alpha}$ to conclude that

$$
\begin{gathered}
\left|\int_{B_{2 r}(x)} N_{i j}(x-\xi)(f(\xi)-f(x)) d \xi\right| \leq[f]_{C^{\alpha}} \int_{B_{2 r}(x)}\left|N_{i j}(x-\xi) \||\xi-x|^{\alpha} d \xi \leq\right. \\
\quad \leq C[f]_{C^{\alpha}} \int_{B_{2 r}(x)}|\xi-x|^{\alpha-n} d \xi \leq \frac{C[f]_{C^{\alpha}}}{\alpha}(2 r)^{\alpha} \leq C_{\alpha}[f]_{C^{\alpha}} r^{\alpha}
\end{gathered}
$$

where C_{α} only depend on α, and n. Similarly we may estimate

$$
\left|\int_{B_{2 r}(x)} N_{i j}(y-\xi)(f(\xi)-f(y)) d \xi\right| \leq C_{\alpha}[f]_{C^{\alpha}} r^{\alpha}
$$

Next we use Lemma 2 to estimate

$$
\begin{gathered}
\left|\int_{B_{2 R}(0) \backslash B_{2 r}(x)}\left(N_{i j}(x-\xi)-N_{i j}(y-\xi)\right)(f(\xi)-f(x)) d \xi\right| \leq \\
\leq[f]_{C^{\alpha}} \int_{B_{2 R}(0) \backslash B_{2 r}(x)} \frac{C|x-y|}{|x-\xi|^{n-1}|\xi-x|^{\alpha} d \xi \leq} \\
\leq C[f]_{C^{\alpha}}|x-y| \int_{B_{2 R}(0) \backslash B_{2 r}(x)} \frac{C}{|x-\xi|^{n+1-\alpha}} d \xi \leq \\
\leq C[f]_{C^{\alpha} r} r\left(\frac{1}{(2 r)^{1-\alpha}}-\frac{1}{(2 R)^{1-\alpha}}\right) \leq C[f]_{C^{\alpha}} r^{\alpha}+C[f]_{C^{\alpha}} \frac{r}{R^{1-\alpha}} .
\end{gathered}
$$

To estimate the final integral in (2.6) we do an integration by parts in the first term and use the triangle inequality as follows

$$
\begin{gathered}
\mid \int_{B_{2 R}(0) \backslash B_{2 r}(x)} N_{i j}(y-\xi)(f(y)-f(x)) d \xi- \\
-f(x) \int_{\partial B_{2 R}(0)} N_{i}(x-\xi) \nu_{j} d A(\xi)+f(y) \int_{\partial B_{2 R}(0)} N_{i}(y-\xi) \nu_{j} d A(\xi) \mid= \\
\mid-\int_{\partial B_{2 R}(0)} N_{i}(y-\xi) \nu_{j}(f(y)-f(x)) d \xi-\int_{\partial B_{2 r}(x)} N_{i}(y-\xi) \nu_{j}(f(y)-f(x)) d \xi \\
-f(x) \int_{\partial B_{2 R}(0)} N_{i}(x-\xi) \nu_{j} d A(\xi)+f(y) \int_{\partial B_{2 R}(0)} N_{i}(y-\xi) \nu_{j} d A(\xi) \mid \leq \\
\leq|\int_{\partial B_{2 r}(x)} N_{i}(y-\xi) \nu_{j} \underbrace{(f(y)-f(x))}_{\leq[f]_{C^{\alpha}} r^{\alpha}} d \xi|+ \\
+|f(x)| \int_{\partial B_{2 R}(x)} \underbrace{\left|N_{i}(x-\xi)-N_{i}(y-\xi)\right|}_{\leq \frac{C|x-y|}{R^{n}}} d A(\xi) \leq \\
\leq C[f]_{C^{\alpha}} r^{\alpha}+\frac{C|f(x)| r}{R}
\end{gathered}
$$

notice that we get out an extra minus when we integrte by parts in the first equality since ξ hs a minus in the argument of $N_{i j}(y-\xi)$.

Collecting the terms we arrive at

$$
\begin{gathered}
\left|\frac{\partial^{2} u(x)}{\partial x_{i} \partial x_{j}}-\frac{\partial^{2} u(y)}{\partial x_{i} \partial x_{j}}\right| \leq C\left([f]_{C^{\alpha}}\left(|x-y|^{\alpha}+\frac{|x-y|}{R^{1-\alpha}}\right)+\frac{|f(x)||x-y|}{R}\right) \leq \\
\leq C\left([f]_{C^{\alpha}}|x-y|^{\alpha}+\frac{|x-y| \sup _{B_{R}(0)}|f(x)|}{R}\right)
\end{gathered}
$$

dividing both sides by $|x-y|^{\alpha}$ and taking the supremum over all $x, y \in B_{R}(0)$ gives the desired estimate.

Observe that the above Theorem only estimates the second derivatives in $B_{R}(0)$ - that is away from the boundary. For further applications we will however need the estimate close to the boundary.

Proposition 1. Let Ω be a domain and assume that $u(x)$ is a solution to

$$
\Delta u(x)=f(x) \quad \text { in } \Omega
$$

assume furthermore that $|u| \leq M$ in Ω and that $f \in C_{l o c}^{\alpha}(\Omega)$ and that for any compact set $K \subset \Omega$ the function $f(x)$ satisfies the following estimate

$$
\begin{equation*}
\sup _{x \in K}|f(x)| \leq \frac{C_{0, f}}{\operatorname{dist}(K, \partial \Omega)^{2}} \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
|f(x)-f(y)| \leq \frac{C_{\alpha, f}|x-y|^{\alpha}}{\operatorname{dist}(K, \partial \Omega)^{2+\alpha}} \tag{2.8}
\end{equation*}
$$

then there exists a constant $C_{n, \alpha}$ depending only on α and the dimension n such that

$$
\begin{equation*}
\sup _{x \in K}\left|D^{2} u(x)\right| \leq C_{n, \alpha} \frac{C_{0, f}+C_{\alpha, f}+\sup _{\Omega}|u|}{\operatorname{dist}(K, \partial \Omega)^{2}} \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{x, y \in K} \frac{\left|D^{2} u(x)-D^{2} u(y)\right|}{|x-y|^{\alpha}} \leq C_{n, \alpha} \frac{C_{0, f}+C_{\alpha, f}+\sup _{\Omega}|u|}{\operatorname{dist}(K, \partial \Omega)^{2+\alpha}} \tag{2.10}
\end{equation*}
$$

Proof: We will begin by showing (2.9). The proof is not that difficult - even though the result is very technical.

Part 1: The inequality (2.9) holds.
We fix a compact set $K \subset \Omega$. Since K is compact and Ω open the distance $\operatorname{dist}(K, \partial \Omega)>0$, we define $d=\frac{\operatorname{dist}(K, \partial \Omega)}{4}>0$. Let $x^{0} \in K$ be an arbitrary point then dist $x^{0}, \partial \Omega \geq 4 d$ and the following function

$$
v(x)=u\left(d x+x^{0}\right)
$$

is well defined in $B_{4}(0)$. The chain rule implies that

$$
\Delta v(x)=d^{2} \Delta u\left(d x+x^{0}\right)=d^{2} f\left(d x+x^{0}\right) \equiv g(x) \quad \text { in } B_{4}(0)
$$

where we define $g(x)$ in the last step.
We see that $v(x)$ and $g(x)$ satisfies

$$
\begin{gathered}
\sup _{x \in B_{4}(0)}|v(x)|=\sup _{x \in B_{4 d}\left(x^{0}\right)}|u(x)| \leq \sup _{x \in \Omega}|u(x)|, \\
\sup _{x \in B_{3}(0)}|g(x)|=d^{2} \sup _{x \in B_{3 d}\left(x^{0}\right)}|f(x)| \leq C_{0, f},
\end{gathered}
$$

where we have used (2.7) in the last inequality as well as $\operatorname{dist}\left(B_{3 d}\left(x^{0}\right), \partial \Omega\right) \geq d$.
Furthermore, we may estimate for $x, y \in B_{3}(0)$

$$
\begin{gathered}
\frac{|g(x)-g(y)|}{|x-y|^{\alpha}}=d^{2} \frac{\left|f\left(d x+x^{0}\right)-f\left(d y+x^{0}\right)\right|}{|x-y|^{\alpha}}= \\
\left\{\begin{array}{l}
\text { substitute } \\
\tilde{x}=d x+x^{0}, \tilde{y}=d y+x^{0}
\end{array}\right\}=d^{2+\alpha} \frac{|f(\tilde{x})-f(\tilde{y})|}{|\tilde{x}-\tilde{y}|^{\alpha}} \leq \\
\leq d^{2+\alpha} C_{\alpha, f} \underbrace{\operatorname{dist}\left(B_{3 d}\left(x^{0}\right), \partial \Omega\right)^{-(2+\alpha)}}_{\leq d^{-(2+\alpha)}} \leq C_{\alpha, f},
\end{gathered}
$$

where we again used that $\operatorname{dist}\left(B_{3 d}\left(x^{0}\right), \partial \Omega\right) \geq d$ in the last inequality.
We have thus shown that $v(x)$ solves the following Dirichlet problem

$$
\begin{array}{ll}
\Delta v(x)=g(x) & \text { in } B_{2}(0) \\
v(x)=u\left(d x+x^{0}\right) & \text { on } \partial B_{2}(0)
\end{array}
$$

where $v(x)$ and $g(x)$ are is bounded by $\sup _{\Omega}|u|$ and $C_{0, f}$ respectively and $[g]_{C^{\alpha}\left(B_{3}(0)\right)} \leq C_{\alpha, f}$.

Next we let $\varphi(x) \in C_{c}^{\infty}\left(B_{3}(0)\right)$ be such that $\varphi=1$ in $B_{2}(0)$ and $|\nabla \varphi| \leq 2 .{ }^{1}$ We also define

$$
w(x)=\int_{\mathbb{R}^{n}} N(x-y) g(y) \varphi(y) d y
$$

where $N(x-y)$ is the Newtonian kernel, notice that the integral is well defined since $g(y) \varphi(y)=0$ outside of $B_{3}(0)$. Clearly,

$$
\sup _{B_{2}(0)}|w(x)| \leq \sup _{B_{3}(0)}|g(x)| \int_{B_{2}(0)} N(x-y) d y \leq C_{n} \sup _{B_{3}(0)}|g(x)|=C_{n} C_{0, f}
$$

where the constant only depend on the dimension. Furthermore, by the estimates in Theorem 1 in the first set of notes ${ }^{2}$ we know that

$$
\begin{gathered}
\left|\frac{\partial^{2} w(0)}{\partial x_{i} \partial x_{j}}\right|= \\
=\left|\int_{B_{3}(0)} \frac{\partial^{2} N(y)}{\partial x_{i} \partial x_{j}}(g(y) \varphi(y)-g(0)) d y-g(0) \int_{\partial B_{3}(x)} \frac{\partial N(y)}{\partial x_{i}} \nu_{j}(\xi) d A(y)\right| \\
\leq\left|\int_{B_{3}(0)} \frac{\partial^{2} N(y)}{\partial x_{i} \partial x_{j}}(g(y) \varphi(y)-g(0)) d y\right|+
\end{gathered}
$$

[^1]\[

$$
\begin{gathered}
+|g(0)| \underbrace{\left.\int_{\partial B_{3}(x)} \frac{\partial N(y)}{\partial x_{i}} \nu_{j}(\xi) d A(y) \right\rvert\,}_{\begin{array}{c}
\leq 1 \text { by direct } \\
\text { calculation }
\end{array}} \\
\leq\left(C_{\alpha, f}+C_{0, f}\right) \int_{B_{3}(0)} \frac{1}{|y|^{n-\alpha}} d y+C_{0, f} \leq C_{n}\left(C_{\alpha, f}+C_{0, f}\right)
\end{gathered}
$$
\]

We can conclude that

$$
\begin{array}{ll}
\Delta w(x)=g(x) & \text { in } B_{2}(0) \\
\left|D^{2} w(0)\right| \leq C_{n}\left(C_{\alpha, f}+C_{0, f}\right) & \text { and } \\
\sup _{B_{2}(0)}|w(x)| \leq C_{n} C_{0, f} . &
\end{array}
$$

This in turn implies that $h(x)=v(x)-w(x)$ satisfies

$$
\begin{gathered}
\Delta h(x)=0 \quad \text { in } B_{2}(0) \\
\sup _{B_{2}(0)}|h(x)| \leq \sup _{B_{2}(0)}|v(x)|+\sup _{B_{2}(0)}|w(x)| \leq \sup _{\Omega}|u(x)|+C_{n} C_{0, f}
\end{gathered}
$$

In particular, we can conclude from our interior regularity for harmonic functions that

$$
\left|D^{2} h(0)\right| \leq \frac{n^{3} 2^{2 n+4}}{\omega_{n} 2^{n+2}}\|h\|_{L^{1}\left(B_{2}(0)\right)} \leq C_{n}\left(\sup _{\Omega}|u(x)|+C_{0, f}\right)
$$

We may conclude that

$$
\begin{gathered}
\left|D^{2} v(0)\right|=\left|D^{2}(v(0)-w(0)+w(0))\right|= \\
=\left|D^{2}(h(0)+w(0))\right| \leq C_{n, \alpha}\left(\sup _{\Omega}|u(x)|+C_{0, f}+C_{\alpha, f}\right) .
\end{gathered}
$$

But

$$
D^{2} v(0)=d^{2} D^{2} u\left(x^{0}\right)
$$

which implies

$$
\begin{gathered}
\left|D^{2} u\left(x^{0}\right)\right| \leq \frac{C_{n, \alpha}\left(\sup _{\Omega}|u(x)|+C_{0, f}+C_{\alpha, f}\right)}{d^{2}}= \\
\quad=\frac{16 C_{n, \alpha}\left(\sup _{\Omega}|u(x)|+C_{0, f}+C_{\alpha, f}\right)}{\operatorname{dist}(K, \partial \Omega)^{2}}
\end{gathered}
$$

This proves part 1.
Part 2: The inequality (2.10) holds.
We use the same set-up as in part 1 and let $K \subset \Omega$ be a compact set and $x^{0}, y^{0} \in K$ be arbitrary points. First we notice that if $\left|x^{0}-y^{0}\right| \geq d$ then the estimate immediately follows, indeed:

$$
\frac{\left|D^{2} u\left(x^{0}\right)-D^{2} u\left(y^{0}\right)\right|}{\left|x^{0}-y^{0}\right|^{\alpha}} \leq \frac{\left|D^{2} u\left(x^{0}\right)\right|+\left|D^{2} u\left(y^{0}\right)\right|}{\left|x^{0}-y^{0}\right|^{\alpha}} \leq
$$

$$
\leq \frac{2^{1+2 \alpha} C_{n, \alpha}\left(\sup _{\Omega}|u(x)|+C_{0, f}+C_{\alpha, f}\right)}{\operatorname{dist}(K, \partial \Omega)^{2}\left|x^{0}-y^{0}\right|^{\alpha}} \leq \frac{2 C_{n, \alpha}\left(\sup _{\Omega}|u(x)|+C_{0, f}+C_{\alpha, f}\right)}{\operatorname{dist}(K, \partial \Omega)^{2+\alpha}}
$$

which is the desired estimate. Therefore we may assume, without loss of generality, that $\left|x^{0}-y^{0}\right|<d$.

We define $v(x)$ as in part 1 of this proof. Then, with $z^{0}=\frac{y^{0}-x^{0}}{d} \in B_{1}(0)$

$$
\frac{\left|D^{2} v(0)-D^{2} v\left(z^{0}\right)\right|}{\left|0-z^{0}\right|^{\alpha}}=d^{2+\alpha} \frac{\left|D^{2} u\left(x^{0}\right)-D^{2} u\left(y^{0}\right)\right|}{\left|x^{0}-y^{0}\right|^{\alpha}}
$$

Therefore it is enough to show that

$$
\frac{\left|D^{2} v(0)-D^{2} v\left(z^{0}\right)\right|}{\left|z^{0}\right|^{\alpha}} \leq C_{n, \alpha}\left(C_{0, f}+C_{\alpha, f}+\sup _{\Omega}|u|\right) .
$$

If we define $w(x)$ and $h(x)$ as in Part 1 of this proof then it follows from Theorem 1, in particular from (1), that

$$
\frac{\left|\frac{\partial^{2} w(0)}{\partial x_{i} \partial x_{j}}-\frac{\partial^{2} w\left(z^{0}\right)}{\partial x_{i} \partial x_{j}}\right|}{\left|z^{0}\right|^{\alpha}} \leq C_{\alpha, n}\left(C_{\alpha, f}+C_{0, f}\right),
$$

where we have used that $\left|z^{0}\right|<1$, that $[g]_{C^{\alpha}\left(B_{2}(0)\right)} \leq C_{\alpha, f}$ and $\sup _{B_{2}(0)}|g| \leq$ $C_{0, f}$.

Next we estimate

$$
\frac{\left|\frac{\partial^{2} h(0)}{\partial x_{i} \partial x_{j}}-\frac{\partial^{2} h\left(z^{0}\right)}{\partial x_{i} \partial x_{j}}\right|}{\left|z^{0}\right|^{\alpha}} \leq \frac{\sup _{x \in B_{1}(0)}\left|D^{3} h(x)\right|\left|z_{0}\right|}{\left|z^{0}\right|^{\alpha}} \leq \sup _{x \in B_{1}(0)}\left|D^{3} h(x)\right|
$$

where we used the mean value theorem for the derivative to conclude that $\frac{\partial^{2} h(0)}{\partial x_{i} \partial x_{j}}-\frac{\partial^{2} h\left(z^{0}\right)}{\partial x_{i} \partial x_{j}}=z^{0} \cdot \nabla \frac{\partial^{2} h(\xi)}{\partial x_{i} \partial x_{j}}$ for some ξ on the line from the origin to z^{0}. But since $h(x)$ is harmonic in $B_{2}(0)$ it follows that

$$
\sup _{B_{1}(0)}\left|D^{3} h(x)\right| \leq C_{n}\|h\|_{L^{1}\left(B_{2}(0)\right)} \leq C_{n} \sup _{B_{2}(0)}|h(x)| \leq C_{n}\left(\sup _{\Omega}|u(x)|+C_{0, f}\right)
$$

We can thus conclude that

$$
\begin{gathered}
\frac{\left|D^{2} v(0)-D^{2} v\left(z^{0}\right)\right|}{\left|z^{0}\right|^{\alpha}} \leq \frac{\left|D^{2} w(0)-D^{2} w\left(z^{0}\right)\right|}{\left|z^{0}\right|^{\alpha}}+ \\
+\frac{\left|D^{2} h(0)-D^{2} h\left(z^{0}\right)\right|}{\left|z^{0}\right|^{\alpha}} \leq C_{n, \alpha}\left(C_{0, f}+C_{\alpha, f}+\sup _{\Omega}|u|\right) .
\end{gathered}
$$

This finishes the proof.

2.2.1 An application.

Before we consider the general case of an elliptic PDE we will consider a simpler perturbation result with a PDE that is some sense is close to the Laplace equation. We will improve on the following result significantly later in the course.

In this section we will assume that

$$
\begin{equation*}
L u(x)=\sum_{i, j=1}^{n} a_{i j}(x) \frac{\partial^{2} u(x)}{\partial x_{i} \partial x_{j}} \quad \text { in } B_{1}(0) \tag{2.11}
\end{equation*}
$$

where $a_{i j}$ satisfies the ellipticity condition and the following conditions

$$
\begin{equation*}
\left\|a_{i j}\right\|_{C^{\alpha}\left(B_{1}(0)\right)} \leq \epsilon \quad \text { for } i, j=1,2, \ldots, n \text { and } i \neq j \tag{2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|a_{i i}-1\right\|_{C^{\alpha}\left(B_{1}(0)\right)} \leq \epsilon \quad \text { for } i=1,2, \ldots, n \tag{2.13}
\end{equation*}
$$

The conditions (2.12) and (2.13) means that the partial differential operator is close to Laplace in some sense. In particular, if $\epsilon=0$ then $L=\Delta$.

Lemma 3. Let $f(x) \in C^{\alpha}\left(B_{1}(0)\right)$ and $g(x) \in C\left(\partial B_{1}(0)\right)$. Assume furthermore that L is as in (2.11) and that $a_{i j}(x)$ satisfies (2.12)-(2.13). Assume furthermore that there exists a $\delta>0$ such that

$$
a_{i j}(x)=0 \quad \text { if } x \in B_{1}(0) \backslash B_{1-\delta}(0) \text { and } i \neq j
$$

and

$$
a_{i i}(x)=1 \quad \text { if } x \in B_{1}(0) \backslash B_{1-\delta}(0)
$$

that is $L \cdot=\Delta \cdot$ in $B_{1}(0) \backslash B_{1-\delta}(0)$.
Then there exists an $\epsilon_{\delta}>0$ (depending on $\delta>0$ as well as $f, g, a_{i j}$ and Ω) such that if $\epsilon<\epsilon_{\delta}$ then there exists a unique solution to

$$
\begin{array}{ll}
L u(x)=f(x) & \text { in } \Omega \\
u(x)=g(x) & \text { on } \partial \Omega
\end{array}
$$

Proof: Even though we have made many preparations the proof is quite complicated. We will prove the Lemma by constructing a convergent sequence of approximating solutions starting with the Dirichlet problem.

Observe that we can find a solution, $u^{0}(x)$, to

$$
\begin{array}{ll}
\Delta u^{0}(x)=f(x) & \text { in } \Omega \\
u^{0}(x)=g(x) & \text { on } \partial \Omega
\end{array}
$$

We will inductively define $u^{k}(x)$, for $k=1,2, \ldots$, as the solution to

$$
\begin{array}{ll}
\Delta u^{k}(x)=\Delta u^{k-1}-L u^{k-1}(x)+f(x) & \text { in } \Omega \\
u^{k}(x)=g(x) & \text { on } \partial \Omega
\end{array}
$$

Since we are going to work with the differences $u-u^{k-1}$ for most of the proof we define $w^{k}(x)=u^{k}(x)-u^{k-1}(x)$ for $k \geq 1$ and $w^{0}(x)=u^{0}(x)$.

Then

$$
\begin{align*}
\Delta w^{k}(x)=\Delta u^{k-1}(x)- & L u^{k-1}(x)-\Delta u^{k-2}(x)+L u^{k-2}(x)= \tag{2.14}\\
& =(\Delta-L)\left(w^{k-1}(x)\right)
\end{align*}
$$

But on each compact set $K \subset \Omega$ we have, by Proposition 1 in particular (2.9), that

$$
\begin{gather*}
\sup _{x \in K}\left|D^{2} w^{k}(x)\right| \leq \tag{2.15}\\
\leq C_{n, \alpha} \frac{d^{2} \sup _{x \in K}\left|(\Delta-L) w^{k-1}\right|+d^{2+\alpha}\left[(\Delta-L)\left(w^{k-1}\right)\right]_{C^{\alpha}(K)}+\sup _{\Omega}\left|w^{k}\right|}{d^{2}}
\end{gather*}
$$

where $d=\operatorname{dist}(K, \partial \Omega)$ and similarly

$$
\begin{gather*}
\left.\left[D^{2} w^{k}(x)(x)\right)\right]_{C^{\alpha}(K)} \leq \tag{2.16}\\
\leq C_{n, \alpha} \frac{d^{2} \sup _{x \in K}\left|(\Delta-L) w^{k-1}\right|+d^{2+\alpha}\left[(\Delta-L) w^{k-1}\right]_{C^{\alpha}(K)}+\sup _{B_{1}(0)}\left|w^{k}\right|}{d^{2+\alpha}} .
\end{gather*}
$$

But clearly, with the notation $\delta_{i j}=0$ if $i \neq j$ and $\delta_{i j}=1$ if $i=j$,

$$
\begin{gathered}
\sup _{x \in K}\left|(\Delta-L) w^{k-1}\right| \leq \\
\underbrace{\sup _{i, j=1, \ldots, n}\left(\sup _{x \in K}\left|a_{i j}(x)-\delta_{i j}\right|\right)}_{\leq \epsilon} \sup _{x \in K}\left|D^{2} w^{k-1}(x)\right| \leq \\
\leq \epsilon \sup _{x \in K}\left|w^{k-1}(x)\right|
\end{gathered}
$$

and similarly ${ }^{3}$

$$
\left[(\Delta-L)\left(w^{k-1}\right)\right]_{C^{\alpha}(K)} \leq \epsilon\left[D^{2} w^{k-1}\right]_{C^{\alpha}(K)}
$$

In conclusion we get form (2.15) and (2.16) that

$$
\begin{gather*}
\sup _{x \in K}\left|D^{2} w^{k}(x)\right| \leq \tag{2.17}\\
\leq C_{n, \alpha} \epsilon\left(\sup _{x \in K}\left|D^{2} w^{k-1}(x)\right|+d^{\alpha}\left[D^{2} w^{k-1}\right]_{C^{\alpha}(K)}\right)+\frac{\sup _{B_{1}(0)}\left|w^{k}\right|}{d^{2}}
\end{gather*}
$$

and

$$
\begin{gather*}
{\left[\mid D^{2} w^{k}(x)\right]_{C^{\alpha}(K)} \leq} \tag{2.18}\\
\leq \frac{C_{n, \alpha} \epsilon}{d^{\alpha}}\left(\sup _{x \in K}\left|D^{2} w^{k-1}(x)\right|+d^{\alpha}\left[D^{2} w^{k-1}\right]_{C^{\alpha}(K)}\right)+\frac{\sup _{B_{1}(0)}\left|w^{k}\right|}{d^{2+\alpha}}
\end{gather*}
$$

[^2]We need to estimate $\sup _{\Omega}\left|w^{k}\right|$. Notice that $w^{k}(x)=u^{k}-u^{k-1}=0$ on $\partial B_{1}(0)$ and from (2.14) we get that

$$
\begin{gathered}
\left|\Delta w^{k}\right|=\left|(\Delta-L) w^{k-1}(x)\right| \leq \\
\leq \epsilon \sup _{x \in B_{1-\delta}(0)}\left|D^{2} w^{k-1}(x)\right|
\end{gathered}
$$

Therefore, by the comparison principle we can deduce that

$$
\begin{equation*}
-B(x) \leq w^{k}(x) \leq B(x) \tag{2.19}
\end{equation*}
$$

where

$$
B(x)=\frac{\epsilon \sup _{x \in B_{1-\delta}(0)}\left|D^{2} w^{k-1}(x)\right|}{2 n}\left(1-|x|^{2}\right)
$$

In particular $B(x)=w^{k}(x)=0$ on $\partial B_{1}(0)$ and $-\Delta B(x) \geq \Delta w^{k} \geq \Delta B(x)$.
We may thus estimate

$$
\begin{equation*}
\sup _{B_{1}(0)}\left|w^{k}(x)\right| \leq \epsilon \sup _{x \in B_{1-\delta}(0)}\left|D^{2} w^{k-1}(x)\right| \tag{2.20}
\end{equation*}
$$

Using (2.20) in (2.17) and (2.18) we can conclude that

$$
\begin{gather*}
\sup _{x \in K}\left|D^{2} w^{k}(x)\right|+d^{\alpha}\left[D^{2} w^{k}(x)\right]_{C^{\alpha}(K)} \leq \\
\leq C \epsilon\left(\frac{1+d^{2}}{d^{2}} \sup _{x \in K}\left|D^{2} w^{k-1}(x)\right|+d^{\alpha}\left[D^{2} w^{k-1}\right]_{C^{\alpha}(K)}\right) \leq \tag{2.21}\\
\leq \frac{1}{2}\left(\sup _{x \in K}\left|D^{2} w^{k-1}(x)\right|+d^{\alpha}\left[D^{2} w^{k-1}\right]_{C^{\alpha}(K)}\right)
\end{gather*}
$$

where the last inequality follows if ϵ is small enough, say $\epsilon \leq \frac{c \delta^{2}}{2}$ for some small c, and $d \geq \delta$.

Equation (2.21) is the heart of the proof since it shows that

$$
\begin{gathered}
\sup _{x \in K}\left|D^{2} w^{k}(x)\right|+d^{\alpha}\left[D^{2} w^{k}(x)\right]_{C^{\alpha}(K)} \leq \\
\leq \frac{1}{2}\left(\sup _{x \in K}\left|D^{2} w^{k-1}(x)\right|+d^{\alpha}\left[D^{2} w^{k-1}\right]_{C^{\alpha}(K)}\right) \leq \\
\leq \frac{1}{2^{2}}\left(\sup _{x \in K}\left|D^{2} w^{k-2}(x)\right|+d^{\alpha}\left[D^{2} w^{k-2}\right]_{C^{\alpha}(K)}\right) \leq \\
\leq \cdots \leq \frac{1}{2^{k}}\left(\sup _{x \in K}\left|D^{2} w^{0}(x)\right|+d^{\alpha}\left[D^{2} w^{0}\right]_{C^{\alpha}(K)}\right)
\end{gathered}
$$

That is $D^{2} u^{k}(x)$ forms a Cauchy sequence in $C^{\alpha}(K)$ for any $K \in B_{1-\delta}(0)$. So, by the Arzela-Ascoli Theorem, $u^{k} \rightarrow u$ uniformly on $B_{1-\delta}(0)$. And on
$B_{1}(0) \backslash B_{1-\delta}(0)$ it directly follows that u^{k} converges, at least for a subsequence, since $\Delta u^{k}(x)=f(x)$ in $B_{1}(0) \backslash B_{1-\delta}(0)$.

So $u^{k} \rightarrow u$ in $C_{\text {loc }}^{2, \alpha}\left(B_{1}(0)\right)$. By the definition of u^{k} it als follows that

$$
\Delta u^{k}=(\Delta-L) u^{k-1}(x)+f(x) \Rightarrow L u^{k-1}=\underbrace{\Delta\left(u^{k-1}(x)-u^{k}(x)\right)}_{\rightarrow 0 \text { in } C_{\text {loc }}^{\alpha}}+f(x) .
$$

It follows that

$$
L u(x)=f(x) \quad \text { in } B_{1}(0)
$$

Using (2.19) together with

$$
\left|w^{k}(x)\right| \leq B(x) \leq \frac{C\left(1-|x|^{2}\right)}{2^{k}}
$$

we can conclude that
$\left|u^{k}(x)-u^{0}(x)\right| \leq \sum_{i=1}^{k}\left|u^{k}-u^{k-1}\right| \leq \sum_{i=1}^{k}\left|w^{k}(x)\right| \leq C\left(1-|x|^{2}\right) \sum_{i=1}^{k} \frac{1}{2^{i}} \leq C\left(1-|x|^{2}\right)$
which implies that for every $k=1,2,3, \ldots$

$$
u^{0}(x)-C\left(1-|x|^{2}\right) \leq u^{k}(x) \leq u^{0}(x)+C\left(1-|x|^{2}\right)
$$

Since $u^{0} \in C(\bar{\Omega})$ we can conclude that $u(x) \in C(\bar{\Omega})$.
Uniqueness of $u(x)$ follows by the maximum principle, in particular Corollary 2.

Remarks: There are several things to say about this Lemma.

1. First of all, the result is very unsatisfactory in several respects. The most obvious is that we assume that $a_{i j}(x)=\delta_{i j}$ in $B_{1}(0) \backslash B_{1-\delta}(0)$. But this assumption is necessary for us to estimate (2.21).
That we need this assumption is because we our estimates of $D^{2} u(x)$ breaks down when x is close to the boundary. In particular the presence of the inverse of the distance to the boundary in the statement of Proposition 1.

Therefore we need to develop a theory that better estimates the solutions close to the boundary, estimates without the $\operatorname{dist}(K, \partial \Omega)^{-1}$ terms.
2. We need to develop some better terminology in order not to get lost in the technicalities. In particular we need to develop the language of Banach spaces as well as some functional analysis.
3. It is also rather unsatisfactory that the proof only works for small ϵ. The theory only works for small ϵ because, and this is very important, we do not have a regularity theory for the general equation $L u(x)=f(x)$. If we had such a theory we could, using the terminology of the beginning of this chapter, apply the same proof in Lemma 3 to find a solution to $L_{t+\epsilon} u(x)=f(x)$ if we could solve a solution to $L_{t} u(x)=f(x)$ - and then for $L_{t+2 \epsilon} u(x)=f(x)$ etc.

In the next chapter we will continue to develop the regularity theory for elliptic PDE. Then we will see that the interior regularity theory actually implies boundary regularity. Once we have the regularity theory in place we will be able to show existence for the general equation $L u(x)=f(x)$ - under some assumptions on L and on the boundary of Ω.

[^0]: ${ }^{1}$ Since $\frac{\partial^{2} u(x)}{\partial x_{i} \partial x_{j}}=\frac{\partial^{2} u(x)}{\partial x_{i} \partial x_{j}}$ for a C^{2} function there is no loss of generality to assume that A is diagonalizable and thus that the n eigenvalues exists.

[^1]: ${ }^{1}$ That this is possible is easy to see geometrically, or one could define $\varphi(x)=$ $\int_{B_{5 / 2}(0)} \phi_{1 / 4}(x-y) d y$ where $\phi_{1 / 4}$ is the standard mollifier.
 ${ }^{5}$ See step 3 of that proof.

[^2]: ${ }^{3}$ Here we are cheating a little. To be exact, we are skipping some details. The assertion is justified but it uses some results that we will cover later.

