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Chapter 1

Apriori interior estimates
for constant coefficient
PDE.

In the last chapter we saw that we can estimate [D2u]Cα for the solution to
∆u(x) = f(x) in terms of f and sup |u|. And very importantly, we also saw
that such estimates leads to existence of solutions for PDE with coefficients
that are close, in Cα−norm, to that are close to the coefficients of ∆ (that
is aij(x) ≈ δij). We will use this knowledge to construct solutions to general
variable coefficients PDE.

In particular, if we consider a general linear PDE with variable coefficients:

Lu(x) =

n∑
i,j=1

aij(x)
∂2u(x)

∂xi∂xj
+

n∑
i=1

bi(x)
∂u(x)

∂xi
+ c(x)u(x) = f(x) in Ω, (1.1)

where aij(x), bi(x) and c(x) ∈ Cα. Then if we consider a small enough ball
Br(x

0) ⊂ Ω then

aij(x) ≈ aij(x0), bi(x) ≈ bi(x0) and c(x) ≈ c(x0) in Br(x
0).

This means that in the small ball Br(x
0) we will have that L· is close to a PDE

with constant coefficients:

Lu(x) ≈
n∑

i,j=1

aij(x
0)
∂2u(x)

∂xi∂xj
+

n∑
i=1

bi(x
0)
∂u(x)

∂xi
+ c(x0)u(x) ≈ f(x) in Br(x

0).

(1.2)
One usually say that a PDE like (1.2) has frozen coefficients and the method
we will use is often called freezing of the coefficients.

Thus if we understand constant coefficient PDE better then we should be
able to better understand a variable coefficient equation. The method is quite
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2CHAPTER 1. APRIORI INTERIOR ESTIMATES FOR CONSTANT COEFFICIENT PDE.

subtle, and it is not at all clear at this point that freezing of the coefficients
will yield any useful results. However, in this chapter we will prove a simple
regularity result for constant coefficient equations. In the next chapter we will
show that we can actually freeze the coefficients to get a good regularity theory
for variable coefficient equations.

Before reading the rest of this chapter it is advisable to read the appendixes
on Banach spaces and interpolation inequalities.

Proposition 1. Assume that Ω is a bounded domain and that u(x) ∈ C2(Ω)
solves the following constant coefficient PDE

n∑
ij=1

aij
∂2u(x)

∂xi∂xj
= f(x) in Ω

where aij are constants satisfying the following ellipticity condition

λ|ξ|2 ≤
n∑

i,j=1

aijξiξj ≤ Λ|ξ|2 (1.3)

for some constants Λ, λ > 0 and all ξ ∈ Rn.
Then, for any 0 < α < 1 there exists a constant C = C(λ,Λ, n, α) such that

‖u‖C2,α
int (Ω) ≤ C

(
‖u‖C(Ω) + ‖f‖Cα

int,(2)
(Ω)

)
.

Proof: The proof is very simple. We will show that a change of variables
transforms u(x) into a harmonic function v(x) and the estimates for u(x) follows
from the corresponding estimates for harmonic functions. We will do the proof
in several steps - some of them we will only sketch.

Step 1: We may change variables to transform u(x) into a harmonic func-
tion.

Since the matrix A = [aij ] is symmetric we may write it as

A = OTDO,

where O is an orthogonal matrix (with rows consisting of the eigenvectors of
A) and D is the diagonal matrix with the eigenvalues of A along the diagonal.
Using that A is elliptic, (1.3), we know that the eigenvalues of A are bounded
from above and below by Λ and λ > 0 and we may thus take the square root of
D. Now define P =

√
DO, then it follows that A = PTP . Expressed in terms

of components:

ajk =

n∑
i=1

pijpik.

So if we define

v(x) = u(Px)
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then
n∑
i=1

∂2v(x)

∂x2
i

=

n∑
i=1

∂

∂xi

 n∑
j=1

pij
∂u(Px)

∂xj

 =

=

n∑
i,j,k=1

pijpik
∂2u(Px)

∂xj∂xk
=

n∑
j,k=1

(
n∑
i=1

pijPik

)
︸ ︷︷ ︸

=ajk

∂2u(Px)

∂xj∂xk
=

=

n∑
j,k=1

ajk
∂2u(Px)

∂xj∂xk
= f(Px).

Thus it follows that ∆v(x) = f(Px).
It follows from Proposition 1 (Part 5 of these notes, also reformulated in

Proposition 2 in the appendix) that

‖v‖C2,α
int (Ω) ≤ C

(
‖u‖C(Ω) + ‖f(P ·)‖(2)

Cα
int,(2)

(Ω)

)
. (1.4)

Step 2: Bound of |∇u(x)| on compact sets.

Since P is an orthogonal matrix times a diagonal matrix with diagonal ele-
ments in [

√
λ,
√

Λ] it follows that P is invertible. We may therefore write

u(x) = v(P−1x).

In particular,
∇u(x) = P−1 · ∇v(P−1x),

But since all eigenvalues of P−1 lay in the interval [Λ−1/2, λ−1/2] it follows that

|∇u(x)| ≤ 1√
λ
|∇v(P−1/2x)|. (1.5)

Now for any compact set K ⊂ Ω we have that

P (K) = {Px; x ∈ K} ⊂ P (Ω) = {Px; x ∈ Ω},

and if
dist(K, ∂Ω) = d then dist(P (K), ∂P (Ω)) ≥

√
λd. (1.6)

In particular for any x ∈ K ⊂ Ω it follows (1.4), (1.5) and (1.6) that

|∇u(x)| ≤ C

λ

(
‖u‖C(Ω) + ‖f(P ·)‖(2)

Cα
int,(2)

(Ω)

)
dist(K, ∂Ω)

. (1.7)

Step 3: Estimates for D2u(x) and [D2u]Cα(K).

This works exactly the same as in step 1. That is we may write D2u and
[D2u]Cα in terms of v and use (1.4).
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Chapter 2

Apriori interior estimates
for PDE with variable
coefficients.

We are now ready to prove interior apriori estimates1 for equations with variable
coefficients. We will prove the following estimate

‖u‖C2,α
int (Ω) ≤ C

(
‖f‖Cα

int,(2)
+ ‖u‖C(Ω)

)
where C = C(n, α,Ω, λ,Λ) and on the coefficients in the equation:

n∑
i,j=1

aij(x)
∂2u(x)

∂xi∂xj
+

n∑
i=1

bi(x)
∂u(x)

∂xi
+ c(x)u(x) = f(x) (2.1)

We have already seen all the ideas that we are going to use. Our method
of proof will be to freeze the coefficients. In particular, if the coefficients of the
equation are close to constant, say that |aij(x) − aij(x0)| ≤ ε for some small
ε > 0 in a ball Br(x

0) then we may write equation (2.1) as

n∑
i,j=1

aij(x
0)
∂2u(x)

∂xi∂xj
= f(x)−

n∑
i,j=1

(
aij(x)− aij(x0)

)︸ ︷︷ ︸
≤ε

∂2u(x)

∂xi∂xj
− (2.2)

−
n∑
i=1

bi(x)
∂u(x)

∂xi
− c(x)u(x) in Br(x

0)

1An apriori estimate is an estimate for an equation that is made before we know that
solutions exist. Typically one assumes that there exist a solution in some Banach space, say
C2,α

int (Ω), and then proves that there is a bound on the norm of that space that does not
depend on the solution.

5
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We can view this as a constant coefficient equation (with right hand side de-
pending on u) and apply Proposition 1 and derive that

‖u‖C2,α
int (Br(x0)) ≤ C

(
‖u‖C(Br(x0)) + ‖F‖Cα

int,(2)
(Br(x0))

)
,

where F (x) is the right hand side in (2.2). Now ‖F‖Cα
int,(2)

(Br(x0)) will depend

on u. But since we multiply the second derivatives of the u−term by something
of order ε in (2.2) the dependence will not be significant if ε is small enough.

Therefore we can estimate the C2,α
int (Br(x

0)) (or even the norm in Ω) if
aij(x) ≈ aij(x

0). But, and here is the second main idea2, if the coefficients are
continuous then |aij(x) − aij(x0)| ≤ ε in Br(x

0) for any x0 if r > 0 is small
enough. And since we can cover any compact set K ⊂ Ω by finitely many balls
Br(x) it is enough to do prove the regularity in a small ball.

We are now ready to state and prove the Theorem.

Theorem 1. Let u ∈ C2,α
int (Ω), where Ω is a bounded domain and α ∈ (0, 1), be

a solution to

Lu(x) =

n∑
i,j=1

aij(x)
∂2u(x)

∂xi∂xj
+

n∑
i=1

bi(x)
∂u(x)

∂xi
+ c(x)u(x) = f(x) in Ω.

Assume furthermore that aij(x), f(x) ∈ Cα(Ω) and that aij(x) satisfy the
ellipticity condition λ|ξ|2 ≤

∑
ij aij(x)ξiξj ≤ Λ|ξ|2. Then there exists a constant

C = C(n, α,Ω, λ,Λ, aij) such that

‖u‖C2,α
int (Ω) ≤ C

(
‖f‖Cα

int,(2)
(Ω) + ‖u‖C(Ω)

)
.

Proof: Let K ⊂ Ω be a compact set. We need to show that

2∑
j=0

(
dist (K, ∂Ω)

j
sup
x∈K
|Dju(x)|

)
+dist (K, ∂Ω)

2+α
sup
x,y∈K

|Dku(x)−Dku(y)|
|x− y|α

≤

≤ C
(
‖f‖Cα

int,(2)
(Ω) + ‖u‖C(Ω)

)
.

But by the interpolation inequality (Proposition 4 in the appendix.) it is enough
to show that

dist (K, ∂Ω)
2+α

sup
x,y∈K

|Dku(x)−Dku(y)|
|x− y|α

≤ C
(
‖f‖Cα

int,(2)
+ ‖u‖C(Ω)

)
. (2.3)

We will prove the Theorem in three steps. First we will cover K by balls
BδK (xk) in a very specific way, then we will prove (2.3) for an ball Bδ(x

k). In
the final step we will show that it is enough to prove the Theorem for the balls
BδK (xk) in order to prove the Theorem.

Step 1: Let K ⊂ Ω be a compact set and ε > 0 be a fixed constant (to be
determined later) depending only on the coefficients of L. Then we may cover
K by a balls BδK (xk). Where the balls BδK (xk) may be chosen to satisfy

2Freezing of the coefficients was the first
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1. B4δK (xk) ⊂ Ω,

2. |aij(x)− aij(xk)| < ε in BδK (xk),

3. δK ≥ dist(K,∂Ω)
4 if dist(K, ∂Ω) is small enough.

Since ‖aij‖Cα(Ω) < ∞ there is a µε > 0 such that for any x ∈ Ω we have
|aij(x)− aij(y)| < ε for every y ∈ Bµε(x). Now let us denote

dK =
dist(K, ∂Ω)

4

and δ = min(dK , µε). Then obviously K ⊂ ∪x∈KBδ(x). Since K is compact we
can find a finite sub-cover Bδ(x

k) as described in step 1.

Step 2: The following estimate holds

δ2
K‖D2u‖Cαint(B2δK

(xk)) ≤ CL
(
‖u‖C(Ω) + ‖f‖Cα

int,(2)
(Ω)

)
,

where CL depend on the coefficients aij , bi and c through their Cα(Ω)−norm
and the ellipticity constants λ, Λ and also on the dimension n.

Here we use the freezing of the coefficients argument and write, in the ball
B2δK (xk)

n∑
i,j=1

aij(x
0)
∂2u(x)

∂xi∂xj
= f(x)−

n∑
i,j=1

(
aij(x)− aij(x0)

) ∂2u(x)

∂xi∂xj
−

−
n∑
i=1

bi(x)
∂u(x)

∂xi
− c(x)u(x) = F (x),

where F (x) is defined by the last inequality.
Viewing this a s a constant coefficient PDE we may use Proposition 1 to

deduce that

δ2
K‖D2u‖Cαint(B2δK

(xk)) ≤ C
(
‖u‖C(Ω) + ‖F‖Cα

int,(2)
(B2δK

)

)
≤

≤ C

‖u‖C(Ω) + ‖f‖Cα
int,(2)

(Ω) +

∥∥∥∥∥∥
n∑

i,j=1

(
aij(x)− aij(x0)

) ∂2u(x)

∂xi∂xj

∥∥∥∥∥∥
Cα

int,(2)
(Ω)

+

+C

∥∥∥∥∥
n∑
i=1

bi(x)
∂u(x)

∂xi

∥∥∥∥∥
Cα

int,(2)
(B2δK

)

+ ‖c(x)u(x)‖Cα
int,(2)

(B2δK
)

 ≤
≤ C

(
‖u‖C(Ω) + ‖f‖Cα

int,(2)
(Ω)

)
+
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+

n∑
i,j=1

∥∥aij(x)− aij(x0)
∥∥
C(B2δK

)︸ ︷︷ ︸
<ε

∥∥∥∥ ∂2u(x)

∂xi∂xj

∥∥∥∥
Cint,(2)(B2δK

)

+ (2.4)

+

n∑
i,j=1

∥∥aij(x)− aij(x0)
∥∥
C(B2δK

)︸ ︷︷ ︸
<ε

[
∂2u(x)

∂xi∂xj

]
Cα

int,(2)
(B2δK

)

+

+

n∑
i,j=1

[
aij(x)− aij(x0)

]
Cα(B2δK

)

∥∥∥∥ ∂2u(x)

∂xi∂xj

∥∥∥∥
Cint,(2)(B2δK

)

+

+C

 n∑
i=1

‖bi(x)‖Cα(Ω)

∥∥∥∥∥
n∑
i=1

∂u(x)

∂xi

∥∥∥∥∥
Cα

int,(2)
(B2δK

)

+ ‖c‖C(Ω) ‖u(x)‖Cα
int,(2)

(B2δK
)

 ≤
< C

(
‖u‖C(Ω) + ‖f‖Cα

int,(2)
(Ω)

)
+

+C

 n∑
i=1

‖bi(x)‖C(Ω)

∥∥∥∥∥
n∑
i=1

∂u(x)

∂xi

∥∥∥∥∥
Cα

int,(2)
(B2δK

)

+ ‖c‖C(Ω) ‖u(x)‖Cα
int,(2)

(B2δK
)

+

+CLδ
2
K

∥∥D2u
∥∥
Cint(B2δK

)
+ Cεδ2

K

[
D2u

]
Cint(B2δK

)︸ ︷︷ ︸
≤
δ2
K
4 [D2u]Cint(B2δK

)

,

where the constant CL depend on the coefficients aij , bi and c through their
Cα(Ω)−norm and the ellipticity constants λ, Λ and also on the dimension n. We
have also used that [·]Cα

int,(2)
(B2δK

) ≤ Cδ2
K [·]Cαint(B2δK

) and the final “underbrace”

holds if ε is small enough.
Using Propoisition 4 in the appendix we can deduce that

CLδ
2
K

∥∥D2u
∥∥
Cint(B2δK

)
≤

≤ CLCεδ2
K‖D2u‖Cint(B2δK

) + εCLδ
2
K

[
D2u

]
Cαint(B2δK

)
≤ (2.5)

≤ CLCεδ2
K‖D2u‖Cint(B2δK

) +
δ2
K

4

[
D2u

]
Cαint(B2δK

)
,

where the last inequality holds if ε is small enough.
We may also use the the interpolation inequality to estimate the lower order

terms:

C

 n∑
i=1

‖bi(x)‖Cα(Ω)

∥∥∥∥∥
n∑
i=1

∂u(x)

∂xi

∥∥∥∥∥
Cα

int,(2)
(B2δK

)

+ ‖c‖C(Ω) ‖u(x)‖Cα
int,(2)

(B2δK
)

 ≤
(2.6)

≤ CLCεδ2
K‖D2u‖Cint(B2δK

) +
δ2
K

4

[
D2u

]
Cαint(B2δK

)
.
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Using (2.5) and (2.6) in (2.4) we can deduce that, for a somewhat larger CL,

δ2
K‖D2u‖Cαint(B2δK

(xk)) ≤

≤ CL
(
‖u‖C(Ω) + ‖f‖Cα

int,(2)
(Ω)

)
+ (2.7)

+
3δ2
K

4
‖D2u‖Cαint(B2δK

(xk)).

Rearranging terms in (2.7) implies the statement in step 2.

Step 3: Proof of the Theorem.

Since the balls BδK (xk) cover K it follows directly from step 2 and that

δK ≥ dist(K,∂Ω)
4 that

sup
K
|D2u(x)| ≤ Caij

‖u‖C(Ω) + ‖f‖Cα
int,(2)

(Ω)

dist(K, ∂Ω)2
.

Moreover, for any two x, y ∈ K such that |x − y| > dist(K,∂Ω)
8 it follows that

x, y ∈ Bδk(xk) for some ball and thus∣∣D2u(x)−D2u(y)
∣∣

|x− y|α
≤ 2

|x− y|α
sup
K
|D2u(x)| ≤ C

‖u‖C(Ω) + ‖f‖Cα
int,(2)

(Ω)

dist(K, ∂Ω)2+α
.

So we only need to estimate
|D2u(x)−D2u(y)|

|x−y|α for |x − y| ≤ dist(K,∂Ω)
8 ≤

mink(δK)
2 . But if |x − y| ≤ mink(δK)

2 then there exists a ball BδK (xk) such that
x, y ∈ BδK (xk) so we may use step 2 again and conclude that∣∣D2u(x)−D2u(y)

∣∣
|x− y|α

≤ C
‖u‖C(Ω) + ‖f‖Cα

int,(2)
(Ω)

dist(K, ∂Ω)2+α
.

Thus it follows that

dist(K, ∂Ω)2‖D2u‖Cαint(Ω) ≤ C
‖u‖C(Ω) + ‖f‖Cα

int,(2)
(Ω)

dist(K, ∂Ω)2+α
,

where C = C(n, α,Ω, λ,Λ, aij). The Theorem follows by the interpolation in-
equality Proposition 4.
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Appendix A

Barnach Spaces.

We will need some notation from functional analysis in order to simplify the
exposition somewhat. The point of this appendix is not to cover functional
analysis, which is a very large area of mathematics. But just to remind ourselves
of some basic notions. We start with the following definition.

Definition 1. We say that a set A is a linear space over R if

1. A is a commutative group. That is there is an operation “+′′ defined on
A×A 7→ A such that

(a) For any u, v, w ∈ A the following holds: u + v = v + u (addition is
commutative), (u+ v) + w = u+ (v + w) (addition is associative).

(b) There exists an element 0 ∈ A such that for all u ∈ A we have
u+ 0 = u.

(c) For every u ∈ A there exists an element v ∈ A such that u + v = 0,
we usually denote v = −u.

2. There is an operation (multiplication) defined on R×A 7→ A such that

(a) For all a, b ∈ R and u, v ∈ A we have a · (u + v) = a · u + a · v and
(a+ b) · u = a · u+ b · u.

(b) For all a, b ∈ R and u ∈ A we have (ab) · u = a · (b · u).

Examples: 1: The most obvious example is if A = Rn and “+′′ is normal
vector addition and “·′′ is normal multiplication by a real number.

2: Another example that will be much more important to us is if A is a
set of functions, say the set of functions with two continuous derivatives on Ω.
Clearly all the above assumptions are satisfied for twice continuously differen-
tiable functions if we interpret “+′′ and “·′′ as the normal operations.

Many linear spaces satisfies another important structure: that we can mea-
sure distances. Distances allow us to talk about convergence and to do analysis.
We will only be interested in spaces where we have a norm.

11
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Definition 2. A norm ‖ · ‖ on a linear space A is a function from A 7→ R such
that the following axioms are satisfied:

1. For any u ∈ A we have ‖u‖ ≥ 0 with equality if and only if u = 0 (The
Positivity Axiom).

2. For any u, v ∈ A we have ‖u+ v‖ ≤ ‖u‖+ ‖v‖ (The Triangle Inequality).

3. For any u ∈ A and a ∈ A we have ‖a · u‖ = |a|‖u‖ (The Homogeneity
Axiom).

If a linear space A has a norm we say that A is a normed linear space, or just
a normed space.

Examples: 1: The linear space Rn is a normed space with norm ‖(u1, ..., un)‖ =
(u2

1 + u2
2 + ...+ u2

n)1/2.
2: The set of continuous functions on [0, 1] is a normed space under the

norm

‖u‖ =

∫ 1

0

|u(x)|dx.

3: If we define

‖u‖C2(Ω) = sup
x∈Ω
|u(x)|+ sup

x∈Ω
|∇u(x)|+ sup

x∈Ω
|D2u(x)|, (A.1)

Then the set of two times continuously differentiable functions u(x) on Ω for
which ‖u‖C2(Ω) is finite forms a normed space: C2(Ω). Notice that 1

x /∈ C2(0, 1)

even though 1
x is continuous with continuous derivatives on (0, 1).

The final property that we need in our function-spaces is completeness.

Definition 3. Let A be a normed linear space. Then we say that A is complete
if every Cauchy sequence uj ∈ A converges in A.

Remember that we say that uj ∈ A is a Cauchy sequence if there for every
ε > 0 exists a Nε such that ‖uj − uk‖ < ε for all j, k > Nε. So if A is complete
and uj is a Cauchy sequence in A then there should exist an element u0 ∈ A
such that limj→∞ ‖uj − u0‖ = 0.

Examples: 1: It is an easy consequence of the the Bolzano-Weierstrass
theorem that Rn is complete. In particular, every Cauchy sequence is bounded.
Therefore the Bolzano-Weierstrass theorem implies that it has a convergent sub-
sequence. That the Cauchy condition implies that the entire sequence converges
to the same limit is easy to see.

2: The space of continuous functions on [0, 1] with norm ‖u‖ =
∫ 1

0
|u(x)|dx

is not complete. For instance if

uj(x) =


0 if 0 ≤ x ≤ 1

2 −
1
j

j
2

(
x−

(
1
2 −

1
j

))
if 1

2 −
1
j < x < 1

2 + 1
j

1 if 1
2 + 1

j ≤ x ≤ 1
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then uj is continuous and forms a Cauchy sequence. However the limit is clearly

u0(x) =

 0 if 0 ≤ x < 1
2

1
2 if x = 1

2
1 if 1

2 < x ≤ 1.

But u0 is not continuous and therefore not in the space of continuous functions
on [0, 1]. Therefore that space is not complete.

However, if we consider the space C([0, 1]) of continuous functions with norm

‖u‖C([0,1]) = sup
x∈[0,1]

|u(x)|

then we get a complete space. This since the limit limj→∞ uj(x) is uniform and
continuity is preserved under uniform limits.

It is important to notice that the properties of the space is dependent on the
norm. Continuous functions with an integral are not complete, but continuous
spaces with a supremum norm are complete.

3: The space C2(Ω) with norm defined by the supremum as in (A.1) is also
a complete space.

Clearly, in order to do analysis on a linear space it is desirable that the linear
space is complete. We therefore make the following definition.

Definition 4. We call a complete linear space is a Banach space.

A.1 Banach spaces and PDE.

Banach spaces helps us to formulate questions in PDE in a new way.
The initial way to view a PDE is to view it point-wise. That is, for the

Laplace equation for instance, we think of a solution as twice differentiable

function u(x) that should satisfy
∑n
i=1

∂2u(x)
∂x2
i

= f(x) at every point x ∈ Ω.

There is nothing wrong with this viewpoint, and as a matter of fact everything
we do in Banach spaces will depend on results we derived by using this point of
view. However, as the equations becomes more complicated it is reasonable to
look for a simplified conceptualization of what a PDE is. By formulating a PDE
as a problem in Banach spaces we are able to leave the point-wise viewpoint
behind and consider the PDe as a mapping between Banach spaces.

Let us consider a function u ∈ C2(Ω) and we let

Lu(x) =

n∑
i,j=1

aij(x)
∂2u(x)

∂xi∂xj
+

n∑
i=1

bi(x)
∂u(x)

∂xi
+ c(x)u(x)

be an elliptic partial differential operator with continuous coefficients.1 Then
for any u ∈ C2(Ω) we clearly have that Lu(x) ∈ C(Ω).

1We already know that it is more natural to consider PDE with Hölder continuous coeffi-
cients. But it is enough to have continuous coefficients for us to introduce the next idea.
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We can thus view the partial differential operator L as a map between Banach
spaces: L : C2(Ω) 7→ C(Ω). That is, for every u ∈ C2(Ω) there exists an
f ∈ C(Ω) such that Lu(x) = f(x). Similarly, L maps the subset

C2
g (Ω) = {u ∈ C2(Ω); u(x) = g(x) on ∂Ω} ⊂ C2(Ω)

into C(Ω).
Solving the PDE

Lu(x) = f(x) in Ω
u(x) = g(x) on ∂Ω

for a given f ∈ C(Ω) and g ∈ C(∂Ω) is therefore the same as finding an inverse
L−1 of the mapping L : C2

g (Ω) 7→ C(Ω). If such a mapping exists then the
solution is given by u(x) = L−1f(x).

There are several reasons to change the re-conceptualize of a problem in
mathematics. One reason is that changing the point of view might clarify a dif-
ficult concept, simplify statements or show that several problems have a similar
underlying structure2. The most important reason to change the point of view
on a subject is however that one might be able to use different techniques and
prove new results in the new conceptualization.

In this section we will only reformulate some of our results in this new
language and fix some notation. In later chapters we will prove some fixed point
theorems3 in Banach spaces that will help us to prove existence of solutions to
PDE with variable coefficients.

Example: In Theorem 1 in Chapter 2 (in the first part of these lecture
notes) we proved that if f ∈ Cαc (Rn) then

u(x) =

∫
Rn
N(x− ξ)f(ξ)dξ, (A.2)

where N(x) is the Newtonian kernel, solves ∆u(x) = f(x). Using the Liouville
Theorem it is easy to see that the function u(x) is the only solution to ∆u(x) =
f(x) that tends to zero as x→∞.

If we consider ∆ as an operator

∆ : C2
0 (Rn) = {u ∈ C2(Rn); lim

x→∞
u(x) = 0} 7→ C(Rn).

Then Theorem 1 actually shows that the inverse of the Laplacian, ∆−1, is well
defined on Cαc (Rn) ⊂ C(Rn) and given by (A.2).

Example: We know that ∆ is does not have a well defined inverse from
Cc(Rn) to C2(Rn) since there are functions u /∈ C2(Rn) with ∆u ∈ Cc(Rn), see
exercise 3 in the first part of these notes.

2For instance, viewing a PDE as a mapping between linear spaces highlights a similarity
between PDE and linear algebra that might not be so easy to see otherwise.

3Specifically, the contraction mapping principle that we will use to develop a technique
called the method of continuity.
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Based on the above two examples it is a reasonable question to ask between
what spaces does ∆ have an inverse? Or more generally, when does a variable
coefficient PDE L· have an inverse. In the next section we will introduce some
Banach spaces that we know are of importance in inverting PDE.

A.2 Some Banach spaces that are important for
PDE.

We already know that the Hölder spaces Ck,α(Ω) are important in PDE theory.

Definition 5. Given a domain Ω and u a k-times continuously differentiable
function on Ω we will use the notation, for k ∈ N and α ∈ [0, 1],

‖u‖Ck,α(Ω) =

k∑
j=1

sup
x∈Ω
|Dju(x)|+ sup

x,y∈Ω

|Dku(x)−Dku(y)|
|x− y|α

.

Furthermore, we let Ck,α(Ω) denote the set of all two times differentiable
functions for which ‖u‖Ck,α(Ω) <∞.

When α = 0 we will disregard α and the last term in the definition of
‖u‖Ck,α(Ω) and write

‖u‖Ck,α(Ω) = ‖u‖Ck(Ω) =

k∑
j=1

sup
x∈Ω
|Dju(x)|,

and when k = 0 and α ∈ (0, 1) we will write ‖u‖C0,α(Ω) = ‖u‖Cα(Ω).

It is easy to that the space Ck,α(Ω) is a Banach space.

Lemma 1. The space Ck,α(Ω) is a Banach space with the norm ‖u‖Ck,α(Ω).

Proof: It is trivial to verify that Ck,α(Ω) is a linear space and that ‖u‖Ck,α(Ω)
is a norm. That Ck,α(Ω) is complete follows by the Arzela-Ascoli Theorem.

It is quite often that we only need information about the Hölder continuity,
we will therefore define the semi-norm4

[u]Cα(Ω) = sup
x,y∈Ω

|u(x)− u(y)|
|x− y|α

.

We have also seen that the Ck,α(Ω) space is not always suitable for expressing
our theorems. We will therefore use introduce the alternative norms ‖u‖Ck,αint (Ω)

and ‖u‖Ck,α
int,(l)

(Ω) that we use in our interior estimates.

4A semi-norm is satisfies all the requirements for a norm except that ‖u‖ = 0 ⇔ u = 0.
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Definition 6. For any k−times continuously differentiable function u(x) de-
fined on a domain Ω we denote by ‖u‖Ck,αint (Ω) the least constant Γ such that

k∑
j=0

(
dist (K, ∂Ω)

j
sup
x∈K
|Dju(x)|

)
+dist (K, ∂Ω)

k+α
sup
x,y∈K

|Dku(x)−Dku(y)|
|x− y|α

≤ Γ

for all compact sets K ⊂ Ω.
More generally, we will define ‖u‖Ck,α

int,(l)
(Ω) to be the least constant Γ such

that

k∑
j=0

(
dist (K, ∂Ω)

j+l
sup
x∈K
|Dju(x)|

)
+dist (K, ∂Ω)

k+l+α
sup
x,y∈K

|Dku(x)−Dku(y)|
|x− y|α

≤ Γ

for all compact sets K ⊂ Ω.
Furthermore we will denote by Ck,αint (Ω) and Ck,αint,(l)(Ω) the Banach spaces of

k−times continuously differentiable functions for which the norms ‖u‖Ck,αint (Ω)

and ‖u‖Ck,α
int,(l)

(Ω) are bounded.

It is easy to see that Ck,αint (Ω) and Ck,αint,(l)(Ω) are Banach spaces with their
respective norms.

The norms of the spaces Ck,αint (Ω) and Ck,αint,(l)(Ω) controls the functions in

the interior of Ω. In particular if u ∈ Ck,αint,(l)(Ω) then u ∈ Ck,α(K) for any

compact set K ⊂ Ω. However, the norm ‖u‖Ck,α(K) will depend on the distance

dist(K, ∂Ω) and in general functions in Ck,αloc,(l)(Ω) will have infinite Ck,α(Ω)

norm. Some examples might clarify the situation.

Examples: 1. Consider u(x) = sin
(
ln
(

1
x

))
defined on (0, 1/2). Clearly

u(x) is bounded and continuous so u(x) ∈ C(0, 1/2). However, u /∈ C1(0, 1/2)
since Du(x) = − 1

x cos
(
ln
(

1
x

))
which isn’t bounded. But u(x) ∈ C1

int(0, 1/2)
since for any compact set K = [κ, 1/2− κ] ⊂ (0, 1/2) we have

sup
x∈K
|u(x)|+ κ sup

x∈K
|Du(x)| ≤ 1 + κ sup

x∈[κ,1/2−κ]

∣∣∣∣ 1x cos

(
ln

(
1

x

))∣∣∣∣ ≤ 2.

Thus ‖u‖C1
int(0,1/2) = 2.

2: Let u(x) = 1
1−x2 be defined on (−1, 1). Then u(x) is unbounded so

u /∈ Ck,α(−1, 1) for any k or α.
However, u ∈ C1,α

int,(1)(−1, 1) since for any compact set K = [−1 + κ, 1 − κ]

we have

‖u‖C1,α
int,(1)

= κ sup
x∈K
|u(x)|+ κ2 sup

x∈K
|Du(x)|+ κ2+α sup

x,y∈K

|Du(x)−Du(y)|
|x− y|α

<∞

where the upper bound is independent of κ ∈ (0, 1).
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Observe that the norm on Ck,αint,(l)(−1, 1) allows the function and its derivative

to tend to infinity at the boundary of Ω. The parameter l determines how fast
the function and its derivatives may go to infinity. For instance the above
function u ∈ Ck,αint,(l)(−1, 1) for any l ≥ 1 but not for any l < 1.

It is important to realize that these norms, even though they appear to be
artificial, they are natural. For instance we may formulate the interior regularity
result for harmonic functions as:

Proposition 2. Let Ω be a domain and assume that u(x) is a solution to

∆u(x) = f(x) in Ω

assume furthermore that |u| ≤M in Ω and that f ∈ Cαint,(2)(Ω) then there exists
a constant Cn,α such that

‖u‖C2,α
int (Ω) ≤ Cn,α

(
‖f‖Cα

int,(2)
(Ω) + ‖u‖C(Ω)

)
. (A.3)

The proof of Proposition 2 is a direct consequence of Proposition 1 in the 5th
part of these lecture notes together with an interpolation inequality that we will
prove in the next appendix. Notice that the norms ‖u‖C2,α

int (Ω) and ‖f‖Cα
int,(2)

(Ω)

appears in the statement - and that these norms makes the statement of the
Proposition much more compact than the formulation of Proposition 1 in the
fifth part of these notes. The norms are natural in the sense that (A.3) is optimal
and we can not prove a stronger statement without adding further assumptions
on the boundary data of u and on the geometry of Ω.

Remark on scaling: One heuristic way to see that (A.3) is natural is to
consider the “scaling” of the estimate. Since ∆u(x) involves two derivatives it
is natural that if ∆u = f then u should have two more derivatives than f . This
explains that we have a (2, α) norm on the right hand side in (A.3) whereas
the left hand side is only a Hölder α−norm. Since we are not making any as-
sumptions on the boundary data of u in Proposition 2 we can not expect the
derivatives of u to be bounded - in particular if the boundary data is discon-
tinuous at x0 ∈ ∂Ω then u can not have any continuous extension to Ω. So the
best estimate we can hope for is an estimate that allows |∇u(x)| and |D2u(x)|
to tend to infinity as x → ∂Ω. This explains why we have the “int” in the
C2,α

int (Ω)−norm in (A.3).

The difference between the C2,α(Ω) and the C2,α
int (Ω)−norm is that the latter

norm allows

|∇u(x)| ≈ dist(x, ∂Ω)−1, (A.4)

|D2u(x)| ≈ dist(x, ∂Ω)−2 (A.5)

and

sup
x,y∈K

|D2u(x)−D2u(y)|
|x− y|α

≈ dist({x, y}, ∂Ω)−2−α (A.6)
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whereas the C2,α(Ω)-norm requires uniform bounds in the entire domain Ω. To
see that the exponents −1, −2 and −2−α in (A.4), (A.5) and (A.6) are natural
we rescale the equation. We use the estimate (A.4) as an illustration. Assume
that dist(x0, ∂Ω) = 2r then the function v(x) = u(rx+ x0) will solve

∆v(x) = r2f(rx+ x0) in B2(0),

since

n∑
i=1

∂2v(x)

∂x2
i

=

n∑
i=1

(
r2 ∂

2u(rx+ x0)

∂x2
i

)
= r2∆u(rx+ x0) = r2f(rx+ x0). (A.7)

Since supB2(0) |v| ≤ supΩ |u| we can conclude that |∇v(0)| is bounded indepen-

dently of r. But |∇v(0)| = r|∇u(x0)| and if r|∇u(x0)| is bounded independently
of r ≈ dist(x0, ∂Ω) then |∇u(x)| ≈ dist(x, ∂Ω)−1 which is what what (A.4)
states. If you consider the proof of Proposition 1 (in part 5 of the lecture notes)
again you will see that that is exactly how we prove the estimates.

Finally, we need to say something about the l = 2 in the ‖f‖Cα
int,(2)

(Ω)−norm

of (A.3). But we see directly from the scaling in (A.7) that l = 2 is the optimal
l since if |f(x0)| ≈ dist(x0, ∂Ω)−2 (that is the growth of f allowed by the norm
‖f‖Cα

int,(l)
(Ω) with l = 2) then the right hand side in (A.7) is bounded since

r ≈ dist(x0, ∂Ω).

Further properties of the Hölder spaces: In addition to being a Banach
space the Hölder spaces Ck,α(Ω), Ck,αint (Ω) and Ck,αint,(l)(Ω) also have a multiplica-

tion defined5: if φ(x), ϕ(x) ∈ Ck,α(Ω) then φ(x) ·ϕ(x) ∈ Ck,α(Ω) (and similarly

for Ck,αint (Ω) and Ck,αint,(l)(Ω)).

We will only prove this for k = 0, the general case is an easy consequence of
this and the product rule for the derivative.

Proposition 3. Assume that φ(x), ϕ(x) ∈ Cα(Ω) then φ(x) · ϕ(x) ∈ Ck,α(Ω)
and

[φ · ϕ]Cα(Ω) ≤
(
‖φ‖C(Ω)[ϕ]Cα(Ω) + ‖ϕ‖C(Ω)[φ]Cα(Ω)

)
. (A.8)

Proof: The proof uses the same trick as the proof of the multiplication rule
for differentiation. In particular, we may estimate

|φ(x)ϕ(x)− φ(y)ϕ(y)| = |(φ(x)ϕ(x)− φ(x)ϕ(y))− (φ(y)ϕ(y)− φ(x)ϕ(y))| ≤

≤ |φ(x)| |ϕ(x)− ϕ(y)|+ |ϕ(y)| |φ(y)− φ(x)| ≤ (A.9)

≤ ‖φ(x)‖C(Ω) |ϕ(x)− ϕ(y)|+ ‖ϕ(y)‖C(Ω) |φ(y)− φ(x)| ,

where the last inequality follows since ‖φ(x)‖C(Ω) = supx∈Ω |φ(x)| by definition.

5The technical term is that Ck,α(Ω), Ck,αint (Ω) and Ck,α
int,(l)

(Ω) are algebras over R.
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If we divide both sides in (A.9) by |x− y|α it follows that

|φ(x)ϕ(x)− φ(y)ϕ(y)|
|x− y|α

≤ ‖φ(x)‖C(Ω)

|ϕ(x)− ϕ(y)|
|x− y|α

+‖ϕ(y)‖C(Ω)

|φ(y)− φ(x)|
|x− y|α

≤

≤
(
‖φ‖C(Ω)[ϕ]Cα(Ω) + ‖ϕ‖C(Ω)[φ]Cα(Ω)

)
,

by the definition of [ϕ]Cα(Ω) and [φ]Cα(Ω). Taking the supremum over x, y ∈ Ω
yields the result.
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Appendix B

Interpolation inequalities

An interpolation inequality is exactly what it sounds like. Given two inequalities
we might derive a third inequality that somehow lies between the other two. In
this chapter we will show that if the second derivatives and the function value
(zeroth order derivatives) of u is bounded, then the first derivatives are bounded
as well. We will only prove the two simple interpolation inequalities that we
need

Proposition 4. [Interpolation inequality] Suppose that u ∈ C(Ω) then:

1. If D2u ∈ Cint,(2)(Ω) then, for any ε > 0, there exists a Cε such that the
following inequality holds

‖∇u‖Cint,(1)
≤ Cε‖u‖C(Ω) + ε‖D2u‖Cint,(2)

. (B.1)

2. If [D2u]Cα
int,(2)

(Ω) is bounded then, for any ε > 0, there exists a Cε such

that the following inequality holds

‖D2u‖Cint,(2)
≤ Cε‖u‖C(Ω) + ε[D2u]Cα

int,(2)
(Ω). (B.2)

3. The same is true without the “int′′ and (l) in the norms.

Remark on the proposition. The proposition might seem to be very
abstract (in particular if one is unused to the rather intricate definitions of
the norms). But what it states is that it is enough to control ‖u‖C(Ω) and
‖D2u‖Cint,(2)

in order to control the norm

‖u‖C2
int(Ω) = ‖u‖C(Ω) + ‖∇u‖Cint,(1)

+ ‖u‖C(Ω) + ‖D2u‖Cint,(2)
.

Similarly, ‖u‖C(Ω) and [D2u]Cα
int,(2)

(Ω) controls the norm ‖u‖C2,α
int (Ω).

Proof: We will only prove the first two points since the third point is anal-
ogous.

21
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To show (B.1) we let x0 ∈ Ω. We need to show that

dist(x0, ∂Ω)|∇u(x0)| ≤ Cε‖u‖C(Ω) + ε‖D2u‖Cint,(2)
. (B.3)

If we can show (B.3) then (B.1) follows by taking the supremum over all x0 ∈ Ω.
If we let 4d = dist(x0, ∂Ω) then

sup
Bd(x0)

|D2u(x)| ≤ C

d2
‖D2u‖Cint,(2)

and from Taylors Theorem we can conclude that, for any 0 ≤ t ≤ d,

inf
Bt(x0)

|ξ · ∇u(x)| ≥ |∇u(x0)| − Ct

d2
‖D2u‖Cint,(2)

, (B.4)

where ξ = ∇u(x0)
|∇u(x0)| .

Now for any y1, y2 ∈ Bd(x0) such that y2 = y1 +sξ there exists, by the mean
value theorem a z ∈ Bd(x0) on the line between y1 and y2 such that

2 sup
Bd(x0)

|u(x)| ≥ |u(y1)− u(y2)| = |(y2 − y1) · ∇u(z)|︸ ︷︷ ︸
=|sξ·∇u(z)|

≥ (B.5)

≥ s|∇u(x0)| − Cs2

d2
‖D2u‖Cint,(2)

,

where we used (B.4) with s = t in the last inequality.

Rearranging (B.5) and then multiply both sides by dist(x0,∂Ω)
s we see that

2dist(x0, ∂Ω)

s
‖u‖C(Ω)+

Csdist(x0, ∂Ω)

d2
‖D2u‖Cint,(2)

≥ dist(x0, ∂Ω)|∇u(x0)||∇u(x0)|.

But 4d = dist(x0, ∂Ω) and s > 0 is arbitrary so we can choose s = cεd for an
appropriate c > 0 and conclude that

C

ε
‖u‖C(Ω) + ε‖D2u‖Cint,(2)

≥ dist(x0, ∂Ω)|∇u(x0)|.

This is exactly what we want to prove with Cε = C/ε, (B.1) follows.

Next we prove (B.2).The proof is very similar to the proof of (B.1). However,
we will need to use a second order Taylor expansion instead of a first order
expansion. As before we fix an x0 ∈ Ω and set 4d = dist(x0, ∂Ω).

We aim to show that for x0 ∈ Ω

dist(x0, ∂Ω)2|D2u(x0)| ≤ Cε‖u‖C(Ω) + ε[D2u]Cα
int,(2)

(Ω). (B.6)

Notice that it is enough to show that for all unit vectors η

dist(x0, ∂Ω)2|D2
ηu(x0)| ≤ Cε‖u‖C(Ω) + ε[D2u]Cα

int,(2)
(Ω),
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where Dη = η · ∇ is the directional derivative in the η direction. There is no
loss of generality to assume that η = e1, otherwise we may change basis for our
coordinate system so that η = e1.

Using a Taylor expansion we see that, for y0 = x0 + se1 and |s| ≤ d,∣∣∣∣u(y0)−
(
u(x0) +

∂u(x0)

∂x1
(y0

1 − x0
1) +

1

2

∂2u(x0)

∂x2
1

(y0
1 − x0

1)2

)∣∣∣∣ =

=

∣∣∣∣u(y0)−
(
u(x0) +

∂u(x0)

∂x1
s+

1

2

∂2u(x0)

∂x2
1

s2

)∣∣∣∣ ≤ (B.7)

≤ C |s|
2+α

d2
[D2u]Cα

int,(2)
(Ω).

Let us, for the sake of definiteness assume that ∂2u(x0)
∂x2

1
≤ 0 then we may

choose s such that s∂u(x0)
∂x1

≤ 0 and conclude from (B.7) that

u(y0)− u(x0)− 1

2

∂2u(x0)

∂x2
1

s2 ≤ C |s|
2+α

d2
[D2u]Cα

int,(2)
(Ω),

which implies that∣∣∣∣∂2u(x0)

∂x2
1

∣∣∣∣ ≤ 4

s2
‖u‖C(Ω) + C

|s|α

d2
[D2u]Cα

int,(2)
(Ω),

which gives (B.6) if we choose |s| small enough and that 4d = dist(x0, ∂Ω).


