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Chapter 1

An interlude
- the Need for Boundary
Estimates.

So far we have proved interior estimates, that is estimates for ||u|| 2.« if u solves
int

an elliptic PDE. Unfortunately the interior estimates are not strong enough to
prove existence of solutions since they allow the second derivatives to grow line
dist(z, 0Q) 2.

In order to explain this let us review our strategy for finding solutions to the
equation

n 0% u(x n ou(x .
Di et Gij (x)axa(xi + > bi(x) aii) +c(c)u(z) = f(z) inQ (1.1)
u(z) = g(x) on 9,
let us for notational simplicity assume that b; = ¢ = 0. We write the equation
- 0%u(x) - 0%u(x)
(20 = (290 — ay; 1.2
Z a’ZJ (‘r )a‘/’vzax] Z (al] (l‘ ) a’l] (‘r)) 81,181_] + f(x)? ( )
4,j=1 i,j=1
=F(x)

where we assume that |a;;(2°) — ai;(z)| < e. Notice that if u € C*(2) then
the right hand side in (1.2) may grow like |F(z)| ~ Teiaoq)z s we approach
the bundary 0f).

In order to show that the boundary values are obtained in (1.1) we would
need to construct a barrier w(x) at each boundary point z° € Q. A barrier
was a super-solution to the equation that satisfied w(z") = 0 and w(z°) > 0 in

Q\ {z°}. But a super-solution would have to satisfy

ij=1
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And if F(z) =~ — Tt ooy then it is easy to see that we can not find a barrier in
general. The easiest way to see this is to consider the one dimensional problem
Q=(0,1) and F(z) = — gzmamyz and a11(2°) = 1. Then the equation for the
barrier reduces to

Pue) < _ ¢ in (0,1)
w(0) =0 and
w(z) >0 in (0,1).

But integrating this differential equation leads to w(z) = eln(z) 4+ ax + b for
some constants a,b € R which clearly can not take the value w(0) = 0.

The problem is that the interior estimates allow the solution to grow to fast
at the boundary (that is why they are called interior). Therefore we need to
prove some estimates at the boundary of the domain. It is easy to see that we
can not prove that the solution to (??) has bounded C*® norm without any
assumptions on the boundary and on the domain.

Example: Let Q = B (0) = {z € B1(0) x,, > 0} be a domain in R? and
u(z) be a solution to
Au(z) =0 in
u(z) = |z1|*  on 09,

for some o € (0,1). Such a solution exists by the Perron method. However,
if [|ul|c2.0(q) < C then we would have that ||u(x1,0)|c2.0(,e—1,1)) < C. But
u(z1,0) = |z1|* ¢ C?* which would lead to a contradiction. We may conclude
that u ¢ C%%(Q). As a matter of fact, this shows that the best we can hope for
is that uw € C*(€). This shows that we must assume that the boundary data is
in C** to have any hope to show that [|ul|c2.a(q) is bounded.

Example: Remember that the function wu(r,¢) = r®sin(a¢) solves the
Dirichlet problem

Au(r,¢) =0 in {r € (0,00), ¢ € (0,7/)
u(r,¢) =0 forp =0and ¢ = 7,

for « > . Notice that if o € [1/2,1) then u € C*\ C'. So we have harmonic
functions with zero boundary data that are still not C%®. The problem here
is that the domain has a sharp corner at the origin. Apparently we need to
assume something about the regularity of the domain in order to prove that the
solutions are C%%().

In the following chapters we will pursue estimates for the C%®—norm for
solutions to (1.1). The proofs will be quite similar to the proofs of the inte-
rior estimates. In particular, we will start to show boundary estimates for the
Newtonian potential close to a part of the boundary where the boundary is as-
sumed to be contained in a hyperplane. Then we will continue to investigate the
Dirichlet problem for the laplace equation close to a boundary, again given by a
hyperplane. Having those estimates at hand it is easy to show apriori estimates
for solutions to the Dirichlet problem for variable coefficient PDE.



Chapter 2

Boundary regularity
- The Laplace equation.

In this chapter we will investigate the boundary regularity properties for the
Laplace equations close to a part of the boundary that is a hyperplane. The
proof will be analogous to the interior regularity proof.

We begin by estimating the Newtonian potential in an upper half ball B;R(O).
The proof consists of one major observation - that the boundary terms on the

flat part of the boundary disappears in the estimate for the second derivatives
8%u(x) &%u(z) .

for all second derivatives except =5 »—=. But it is easy to estimate =5+~ in
5 n “n
terms of 881;(;), for i = 1,2,....,mn — 1 and f(z). This since Au(x) = f(z) and
22 ' -1 9?
thus 2348 = f(z) - Ypo) 23

Lemma 1. Let f(z) € C*(BJ(0)) for some 0 < a < 1 and define
uw)= [ N9
B3¢ (0)

then there exists a constant Cy, o depending only on n and o such that the
following inequality holds
(2.1)

SUPBL(0) |f(z)]
[D2U]Ca(3;5(0)) < Ch,a <[f]Ca(B;R(0)) + Rﬁ%a _

Proof: We have already shown, see Theorem ?? (Thm 1 in part 1 of these

2
notes), that axuegi) has the following representation formula for z € Bj,(0)
i0T;

(f(&) = f(x)) de—f(x) ON(z —§)

3%3&6] 8B2+R(0) 5;101

Vi (§)dA(E).
(2.2)

0%u(z) _/ O?N(x — &)
8962-8:5]- o B;R(O)
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Strictly we only proved this representation for the domain Bsg(0) but the de-
duction for the upper half ball B;r 2(0) is exactly the same.

We will split the proof into two cases. The first case is very similar to the
proof of Theorem ?? (Thm 1 part 5 of these notes) and we will only indicate
the minor differences.

Case 1: Estimates for {327“} when i #n or j # n.
0x;0x; C“‘(B;;(O)) 7é J 7&
2
We may assume that j # n, if not then i # n and we may use that gxua(i) =
T J
8%u(x)

97,00, 1O reduce to the case for j # n.

Observe that the normal v = —e,, on 9B53(0) N {z,, = 0} and the boundary
integral in (2.2) therefore reduces to

ON(z—¢) A B
1 [ @i =

ON(xz — &
— i@ [ NG 8)
8Bapr (0)N{x, >0} Li

Therefore, for j # n, the representation in (2.2) becomes

v (§)dA(E).-

Ou(x) _ PN@E =8 (e — -
O0x;0x; o A;R(O) 01,01 (f(&) — flx))dg (2.3)
ON(z—§)

~f@) /83 (0)n{z,>0} dz; (AL,

Notice that we do not integrate over the set {x,, = 0} in (2.3). We may
therefore form the difference
0?u(x) B 0?u(x)
8@63:]- 8.731'8$j

[ N9 (- ) - | Ni(a—ydA(e) -
B, (0) 9B r(0)N{an>0}

- Na- 9O - f) de+ 1) [ Nily — € dA(E)|
B, (0) 9B2r (0)N{z, >0}

This the integrals we estimate in the proof of Theorem ?? (Thm 1 part 5 of
these notes) with the only difference that we now integrate over a smaller set
Byr(0) N {z, > 0} in place of Bar(0). But the estimates of Theorem ?? (Thm
1 part 5 of these notes) still works line for line in this case.

We may therefore conclude that, for j # n,

SUPpL(0) |f($)|> '

O%u
|: < Cn,oz ([ﬂC‘J‘(BzR(O)) + R (24)

3%‘3%} o (B5(0))



Case 2: Estimates for {g%

}C%B;(o»'
Since Au(z) = f(z) it follows that

*u() S Pulx)
&T% = f(a?) - = 53;?
In particular
) n—1 oo
EEIIR [EE ok~ I
Tn 1o (B (0)) = 7 Ce(Bf(0))
n—1 82u($)
< [f(x)]Ca<B;(o>) + Z 0x? :
j=1 U FoLY0: 3 (1))
Sup g, (o) |.f ()]
= @len@gon + (= Dlna ([flcaww@» " 1(%)> ’

where we used the triangle inequality in the first inequality and (2.4) in the last
inequality.
If we redefine C,, o to 1+ (n — 1)C,, o we may conclude that

SUPBL(0) f(x)|) .

0%u
Ra

a 5 S Cn,a ([f]C"‘ B 0 +
ax%}ca(B;(o)) (Ban(©)

Corollary 1. Let u be as in Lemma 1 then

1
HUHC?JX(ng(O)) < Cna <[f]ca(B;R(o)) + (Ra + RQ) |f($)||c(B;R(o))) .

Proof: By the interpolation inequality it is enough to show that

||UHC(BQ+R(0)) < CnR2Hf(m)”C(B;'R(O))'

By the definition of u we have

fu()| = <

/ N — &) f(€)de
B3 (0)

< Hf“C(B;'R(O)) < C"Rznf(x)”C(BJR(O))’

[, . Ve

2r(0)

where we used the explicit formula for N in the last inequality. O
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Next we estimate the solution to the Dirichlet problem up to the boundary
in BIR with zero boundary data on x,, = 0. The proof uses that we may reflect
the potential solution from Lemma 1 in the hyperplane {z, = 0}, just as we
reflected the Newtonian kernel in order to find a Greens function in R’ . This
allows us to reduce the regularity problem to the case when f(z) = 0. An
odd reflection in x, = 0 to the solutions with f(0) = 0 reduces the boundary
regularity case to an interior problem.

Proposition 1. Assume that u € C?(B}) and that u solves

Au(z) = f(@)  in Bip(0)
u(z) =0 on Byr(0) N {z, =0},

where f € CY(B{(0)) for some a € (0,1).
Then there exists a constant Cy, o depending only on n and o such that

[ulce.e (st 0)) = (2.5)

1 1
<Cha ([f]Ca(BO o) T <Ra + R ) Iflless, o) + WHMC(B;R(O))) :

Proof: We will write u(x) = v(z) + h(z) in the ball B,(0) where

Av(z) = f(x)  in Byr(0)
v(xz) =0 on Byg(0) N {z, =0}
and
Ah(z) = h(x) in By5(0)
h(z) =0 on Byg(0) N {z, =0} (2.6)

h(z) =u(x) —v(z) on dBagr(0) N {x, > 0}.
We need to estimate the C*%(B},(0))—norms of v(z) and h(z) in turn.
Step 1: Construction of and estimates for v(x).

We may define the reflection of f(x) in C*(Bsr(0)) according to

f(x) _ { f(z) if x, >0

f(xtha"vxn—la_mn) if Ty < 0.

Then f € C*(Bar(0)) and || fllca (B.1n(0)) = [fllce (st 0))-
Now define

i@)= [ N@-f(de fore e Bur(0)
B4r(0)

and

o(x) = / Nz — &) f(€)de for = € Bly(0).
B}, (0)



From Theorem ?? (Thm 1 part 5 of these notes) we derive that

Supp, .0 |f ()] )

[Dzﬁ]ca(BQR(o) <Can ([f}CQ(BALR(O)) + R

and similarly from Lemma 1 we derive that

§ SUPg, 4 (0) |f ()]
[Dzv]CQ(B;R(O)) S Cn,a ([f]ca(BZrR(O)) + MT .

In particular we may conclude that v(z) = 20(x) — 0(z) satisfies the same
estimate (possibly with a larger constant)

SUP B, (0) |f ()]
[D*V e (g, (09 < O (mca(BIR(on )

We claim that v(xy, o, ...,2,—1,0) = 0. This follows easily from the sym-
metry of the Newtonian kernel:

N(xl_gla '~'7xn71_fn717xn_fn) = N(x1_£17$2_§27 ~~~»$n71—§n71, _xn"i_gn)a

since N(z — &) only depends on |z — &|.
Therefore, if x, =0,

So if x, = 0 then v(x) = 20(x) — v(x) = 0 as claimed.
Step 2: Construction of and estimates for h(z).

The function h(z) = u(z) — v(z) so we only need to estimate its C*“ norm.

We will do that by considering the odd reflection of h(x) - which we will show
is harmonic in Bagr(0) - together with interior estimates for harmonic functions.
In particular that we may estimate the C3(Bg(0))—norm of a harmonic func-
tions by its C'(Bar)—norm.

We need to estimate HhHC(B;R(O)) which, by the maximum principle, is the
same as estimating

sup |h(@)| = sup |u(@)—v(@)| < sup [u@)|+ sup |v(a)].
9B (0) 9B (0) 9B (0) 9B3(0)
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The supremum of u appears in the right hand side of (2.5) so we only need to
estimate SUPy B+ (0) |v(x)]. This is easily done as in the proof of Corollary 1. In
particular,

o(z)] <2

+

/ N — &) f(€)de /’ Nz — &) f(©)de| <
B (0) B4r(0)

<3 legyon [, IN©14E < Call g
Therefore

||hHC(B;R(o) = HUHCB;R(()) + CanHc(BIR(O))RQ'

Consider the odd reflection of h on dB3r(0):

() = h(z)  ifz, >0 and x € 9Byr(0)
= —h(z) if z, <0 and z € 9B3r(0).

Furthermore we let g solve the Dirichlet problem

Ag(x) = 0 in Bagr(0)

g(z) =h(z) on Byr(0). (2.7)

Then, since g(z) is uniquely determined by (2.7) and since h(z) is odd in ,,
it follows that g(x) is an odd function in z,. That is g(z1,22,...,0) = 0 and
therefore g(z) solves (2.6). Uniqueness for the Dirichlet problem implies that
M) = g(x) in BE(0).

Now, since g(x) is harmonic in Bag(0) it follows that there exists a constant
', such that

3 3 3
1D h”c(B;(o)) =D g(m)Hc(B;(o)) < 1D°g(@)lleBro) <
Cp Cp
< EHQHC(BM) = ﬁHhHC(BQR)-

An application of the mean-value Theorem from calculus implies that

—a Cn
[D2h]ca(3;(o)) <R' HD3h||c(B;(o)) < W”}LHC(BzR) =<

1 1
<0 (= + ) Wlcqagyon + mavslloaz,on )

In particular, we have shown that

[DQU]CQ(B;(O)) < Cha ([h]CQ(BOR(O)) + [h]CQ(B%(O))) <

1, 1
< Cha <[f]0a(3g(o)) + <Ra +R ) Iflless, o) + WHMC(B;R(O))) :
O



Corollary 2. Under the assumptions of Proposition 1 we have the estimate

||U||cz,a(3;(o)) < (2.8)

1 1
<Cha ([f]Ca(B%(o)) + (Ra + 32) Iflless, o) + WHUC(B;R(O))) :

Proof: We only need to estimate HVUHC(B;(O)) and HDQuHC(B;(O)). How-
ever, that can be done by an interpolation inequality.

We end this chapter with a proposition for constant coefficient PDE. The
proof is, as it was for the interior case, based on a change of variables that
reduces the PDE to the Laplacian.

Proposition 2. Let u(z) be a solution to the constant coefficient elliptic PDE

n 2u xT .
i Wi e = f(@)in B (0) 29)
u(z) =0 on 0Q N {z, = 0},

where a;; = aj; satisfies the ellipticity condition for all {&inR™ and some A, A > 0

A€ < Z aij&€; < AJEP2.

ij=1
Then there exists a constant Cy p n,o > 0 such that

||u||c2,a(3;(0)) < (210)

1 1
< CxAma <[f]cw(3g(o)) + <Ra + RQ) Il 0)) W”“C(B;R(O))> :

Proof: As in the proof of the interior estimates for constant coefficient PDEs
we make the change of variables v(x) = u(Pz) where P is chosen such that
PTAP = I. Notice that the linear transformation P will map {x, = 0} unto
a hyperplane that we may assume (possibly after a rotation of the coordinates)
to be {z,, = 0}. We may thus apply Corollary 2 on v(z) and then use u(z) =
v(P~1x) to derive the desired estimates for u. For further details see the proof
of Proposition ?? (Part 6 of these notes).



10CHAPTER 2. BOUNDARY REGULARITY- THE LAPLACE EQUATION.



Chapter 3

Boundary Regularity
- Variable Coefficient
Equations.

In this chapter we prove apriori estimates up to the boundary for general linear
variable coefficient PDE for C%® domains. We start by showing estimates for
variable coefficient equations in upper half balls Bor(0) and then we show that
general domains with C%® boundaries can be reduced to this case.

3.1 Boundary Regularity when the Boundary is
a Hyperplane.

In this section we use a freezing of the coefficients argument, as in Theorem 77,
to show that variable coefficient equations have C%® estimates up to the flat
part of the boundary in an upper half ball.

Theorem 1. Let u € C**(B;3(0)) be a solution, in BYx(0), to

) = 32 au(@) it + 3o G+ elonte) = @) 6)

i,j=1

u(z) =0 on {x, =0} N Bagr(0) (3.2)

Assume furthermore that a;j(z),b;(z), c(x) € C(B3z)(0), that a;;(z) = aj;(x),
and that a;;(x) satisfy the following ellipticity condition

n

AEP <) ai(@)&é5 < AJEP,

ij=1

11
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for some constants 0 < A < A and every x € Bi5(0) and all £ € R™.
Then there exists a constant C' = C(X\, A, n, a;j,b;,¢) such that

el 2.5 0)) =

1 1
<C ([f]Ca(B%(O)) + (Rf’ + R2> Iflless, o) + WWHC(B;R(O))) ~

Proof: This proof mimics the proof of Theorem ?? (Theorem 1 in part 6).

Therefore we will only indicate the minor differences. We may choose B, /2(0)

as the compact set K and cover K by a finite number of balls Bs(z*) such
that either Bys(z*) C B;FR/Q(O) or Bys(xF) N B;FR/Q(O) = BJ5(2"). To estimate
||D2uHC_at (@) in the first case we may proceed exactly as in Theorem ??. In
case Bys(z¥) N B;LR/Q (0) = Bf;(2*) we may apply the boundary estimates from

the previous section in place of Proposition ?? (Prop 1 in part 6). O

Corollary 3. Let u € C**(Bjz(0)) be a solution, in BI(0), to

~ 2U X - u\x
() = 3 aule) gt + 3 @ G el = S) (63)

ij=1
uw(z) = g(z') on {x, =0} N Bar(0) (3.4)
Assume furthermore that f(x), a;j(x), bi(z), c(x) € C’O‘(B;R)(O), that g € C**(B4,(0)),
that a;j(x) = a;i(z), and that a;;(x) satisfy the following ellipticity condition

n

Ag? < Z aij()6:€; < AlEJ?,

3,j=1

for some constants 0 < A < A and every x € B;R(O) and all £ € R™.
Then there exists a constant C = C(X\, A, n, a5, b;,¢) such that

lulle2.os o)) =

1 1
<cC (||9||02=Q(B;R(o)) + Uleast o) + <RO‘ + RQ) Iflless, o) + WHUHC(B;R(O))) :
Proof: We may define v(z) = u(z) — g(z’). Then Lv(z) = Lu(x) — Lg(z') =
f(x) — Lg(z'). We may thus define f = f(x) — Lg(z’) € C*(BJ(0)). Clearly
1 llenisgon < € (lallcme o + 1 lcesson)

and
lllce.o (mg0)) < M0llezacmgop + 19llc2a B0 (3.5)

We may apply the previous proposition on v with f in place of f and then
estimate ”uHcha(B;(o)) by (3.5). O
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3.2 Boundary regularity for C?>® boundaries.

Now we change our perspective to domains with boundaries that are locally
given by the graph of a C?-function - which we will call C*“-domains. The
proofs are not that difficult since we may make a change of variables and trans-
form the C%*—domains to domains with the boundary given by a hyperplane
and then use the estimates from the previous chapter.

We will use the notation 2’ = (z1,29,....,2p—1) and V' = (01,02, ..., On_1)
etc. We will also always assume that the PDE we study satisfy the standard
ellipticity condition:

n
AEP <) a(@)&é5 < A6,
ij=1
for some constants A, A > 0.

The next Lemma makes the important reduction of the C?*—domain to a
domain that locally has the boundary contained in a hyperplane {z, = 0} which
allows us to use the theory from the previous chapter. The method is commonly
refereed to as a “straightening of the boundary argument”.

Lemma 2. Let g(a') € C**(By5(0)), g(0) = |V'g(0)] = 0 and
Q = Bogr(0) N {z, > g(z")}.

Assume furthermore that u(x) is a solution in £ to

n

8:61833] Zb 81‘1 e(@ulz) = f(z)  (3.6)

7,7=1 i=1
u(z) =0 on {x, = g(x')} N Bar(0) (3.7

where L satisfies the assumptions of Theorem 1.
Then there exists a constant ¢c(\, A) > 0 such that if |Vg(z')| < ¢(\, A) then
v(x) = u(x1, 22, .y Tn1, Tn — g(z')) satisfies an elliptic equation in {(z', x, —

g(a)) € 2}

r) = Z aij(x) gxzj(;zi + Z bi(z) 8;55) +é(z)v(x) = f(o', 2, — g(a)))
o - (3.8)

v(xz) =0 on {z, = 0},
(3.9)

where a;;, I;i,é e C% with C*—norms only depending on the corresponding
norms for a;;,b; and ¢ and the C**—norm of g. Furthermore, a;; satisfies the
following ellipticity condition

A2 ~ 2

SIEP < 37 dye)gg < 24167 (3.10)

ij=1
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for all £ € R™.

Proof: The proof is straight forward. We may write u(z) = v(z’, z, + g(z'))
and calculate

ou(x)  Ov(a',x, + g(a')) n dg(x’) dv(a’, xp, + g(z'))

0x; Oz; 0x; Oz, for i 7 n,

and

8£Cn 8xn

Similarly we can express the second derivatives of v in terms of v(z’, z,, + g(z'))
as follows, for i,j # n,

dulw) _ Ol + 9(a')

Pu(z) (2, z, + g(2')) n D?g(a") dv(a, x, + g(a'))

&Eiam]— - 835‘18%] 89318% &nn +
, 99(a") 99(a") v(a', xn + g(2')) L 99" Pv(z’,z, + g(a'))
dz;  Ox; ox? z; Oz 0z, ’
Pu(x) _ 0%v(a',zn +g(a')) | dg(a) v(z' zn +g(2') .
0107, 0102, o, 912 for i 7 n,
and
Pu(x) _ 0%v(a', zn + g(a’))
ox2 ox2 '
In particular we have that
ST AL S L A ()
=1 &,_/ 83016307 - ig=1 4 8I18$]

=ai; (2 ,xn—g(z'))

n—1 n—-1
dg(a') vz’ zn + g(2'))
+Z (am(x) + Z 0x; @ij 0x,; 0y,
=ain (2" 2n—g(z))

n—1 n—1
dg(x’ gz \ 0%v(a', z, + g(a’
+ (ann(x) +2 E 7857:- )am(x) + E aij(l') 81‘(8x) ( 972 (=) +
i=1 l B "

i,5=1

=ann (2, xn—g(x’))

n—1 g9 ! / /
*g(x )aij(x) du(a',xn + g(x ))’
6@6;0]» Oy,

_|_
ij=1

where the underbraces indicate how we define a;;.
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We can also calculate

n n—1 ! '
Zbi(l') au(%) = Zbi(fﬂ) oule, gzj_ 9@))

Setting Bm/’xn-}-g(x’) = b;i(),

39 ) 329($’)
8$Z a$ia$j

b (2, 2n + g(x')) = bn(z) + Z bi(

and ¢(z’, z,, — g(2))) we see that

aij(x', x, +g(2')),

15

Z 2,2 + 9@ ) I I | ot ot gl ole! 2 + 9(a).

3xi

=1

Evaluating this at the point (2, z, — g(z)) gives

= 3 ) g Y () S 4 ila)ote) = (o' a(a) = ).

1=

where the last equality defines f (z).
Next we show that L is elliptic. Observe that if write

aipr Qi -+ Qln

@21 Qa22 - A2p
A= .

an1 Ann
and 5
g

1 0 0 3—?

0 1 0 @

=10 01 o

0 0 1+ 29
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then we may write the matrix A = [@if]7 j—, as follows
A=GTAG.

It follows in particular that for any vector & = (&1, ...,&,)T € R™ that:

n

D ki = (GO - A- (G > N|Gel? (3.11)

ij=1

Clearly |G¢* > 1[¢| if [V'g(2’)| < c for some constant c. Notice that (3.11)
states that

> @i > MG >
ij=1
if [V'g(2")| < ¢, which is the left inequality in (3.10). The right inequality (3.10)
in is proved in an analogous way.

€17,

o | >~

To verify that a;;, bi, ¢, f e C* it is enough to verify that

(! / A /
sup |alJ (*T y Tn, + g(xl )) T;J (y y Yn + g(y ))' only depends on HchZ,a and HainC"‘
T,y r—y

(3.12)
and similarly for b;, ¢; and f. This since a;; is defined by terms a;;(z’, z, +g(z'))
multiplied by derivatives of g - which are clearly in C*. So if a;; (2, z, +g(z’)) €
C then a;; € C“ by Proposition ?? (Prop 3 Part 6). To prove (3.12) we notice
that

(! AN N S /
sup %@ 20 +9(2) = iy, y + 9@ _
zy |z —yl|*
— sup |aij () — ai;(y)]
ey |(@ 20 = g(@) = (¥ yn — g(¥))* —

|z —yl o o
= (|($”xn —9(@") = (¥, yn g(@/))) lasglce.

But wn_q(w,l;ﬁ)__y&/, %_q(y,))| < C where C only depend on V’g and thus it
follows that a;; € C* with norm only depending on || f|lc~ and | g||c2.a. O

Next we apply the straightening of the boundary argument to show regularity
in C%“—domains. We also allow non-zero boundary data.

Proposition 3. Let g(z') € C*%(B,,(0)), g(0) = |V'g(0)| = 0 and |[Vg(z')| <

¢, where ¢ > 0 is as in Lemma 2. Also let Q = Bar(0) N {z, > g(z’)}.
Then any solution u(x) in Q to the following PDF

Lu() = _Zl a;;(x) gx“gg 3 bi(x)agi:(cf) +e(a)u(r) = f(z)  (3.13)

u(z) = h(z) on {x, = g(z')} N Bar(0), (3.14)
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where L satisfies the assumptions of Theorem 1, will satisfy the estimate

llull o2.0 (Br(0)n0) < (3.15)

1 1
<C (|h||c2va(89) + fleast o) + (RO‘ + R2> Iflless, o) + R2ta |u||c(32+R(0))) ;

where C = C(\, A, n,a;5,b,¢,9).

Proof: We define v(z) = u(z’, 2, — g(2')). Lemma 2 implies that v solves
an elliptic equation

Lo(x) = f(a' 20 — g(2)) in {(2/, 2, — g(a")) € O} (3.16)
v(z) = h(a', z, — g2')) on {z, = 0}, (3.17)

where the coefficients of L only depend on the coefficients of L and on g.
Corollary 3 implies that v satisfies the right estimates. But u(z) = v(z’, z,, +

g(2") so a simple application of the chain rule for differentiation will imply that

u satisfies (3.15). O

3.3 Global regularity

We are now ready to glue the boundary and the interior regularity together to
prove global regularity. To that end we define C?*—domains as domains whose
boundaries can be covered by balls of some fixed radius such that the boundary
can be represented by a C%“ graph in each ball. See the figure below.

Figure 3.1: A C?“-domain with the coordinate system for one ball B, (x°)
indicated.

Definition 1. We say that a domain Q is C*% if there exists an r > 0 such
that for every x° € O) there exists a coordinate system such that B,.(z°) N 0
is the graph of a C*“—function in this coordinate system.
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With this definition at hand it is easy to prove C>“ estimates for solutions
to linear PDE. We may cover a neighborhood of the boundary by balls such that
we can apply the boundary regularity in each ball. The rest of the domain can
be covered by a compact set K with a mixed distance to the boundary. Using
the interior regularity results we can estimate the C?*—norm of the solution in
the compact set.

Figure 3.2: A C?®-domain with a compact set (with the zig-zag pattern), where
the solution is C%® by interior estimates, and a number of balls where the
solution is C%* by the boundary estimates.

Theorem 2. Assume that u € C%(Q), where Q is a bounded domain, is a
solution to

- 2u(z - u(z
Z a”(z)gxla(xj + ;bz(x)a&il) + cle)u(z) = f(z) in Q (3.18)

2,j=1

u(zx) = g(x) on ON. (3.19)

Assume furthermore that f(x),a;j(x),b;(z), c(x) € C*(Q) and that g(x) € C**(9N)
and that Q is a C*“—domain.
Then there exists a constant C' such that

Jullcz.a) < C (1 fllce@) + lgllcze@a) + ullcw)) (3.20)

here C' = C(n, o, A\, A, a;j,b;, ¢, ) where A, X > 0 are the ellipticity constants of
the PDE.

Proof: We will prove the Theorem in three simple steps.

Step 1: Cover the domain.

Since € is a C?*—domain we may cover the boundary 9 by balls By 4(2),
z € 992, where QN B,.(z) is given by the graph of some function g € C*%. We
may also decrease r, if necessary, to assure that |Vg| < ¢ in Bl where ¢ is as in
Lemma 2.
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Let K = {z € Q; dist(z,0Q) > r/4}. Then K is compact and K together
with the balls B, /5(z), z € 09, will cover .

Step 2: Local bounds for the norm.

For any ball y € Q we will either have B, 4(y) C K or B, /4(y) C B, /2(2)
for some z € 0N2.

If B,/,(y) C K then Theorem ?? will imply that

C
ulloze B, aw) < llullczex) < s (1flco (o) + llullew)) (3.21)

where we have used that dist(K,0Q) = r/4 and thus dist(K,9Q)~ 3T =
2~ (2+0)p=(2+2) and that the factor 22t may be included in the constant
C.

And if B, /4(y) C B, /2(z) then Proposition 3 will imply that

ullcze s, u@wpne < C (I fllca@) + [1Rllcze + lullowy) - (3.22)

Step 3: Global estimates and the conclusion of the Theorem.
Clearly (3.21) and (3.22) together implies that for any x € €2

V()| + |D*u(@)] < C (I fllca) + [hllcze + lullew) (3.23)

where C' = C(n,a, \, A, ai;, bi, ¢, Q) where we included the r dependence in
the dependence on €.
Therefore we only need to show that

|D*u(z) — D*u(y)|
lz —yl|*

< C (Ifllea@) + Ihllcze + lullo) - (3.24)

We will consider two (or three - depending on how you count) cases. Either
| —y| <r/dor|r—y|l>r/4 If |z —y| <r/4 and both z,y € K then (3.24)
follows from (3.21) and if one of x or y, lets say y for definiteness, satisfies
y ¢ K then there must exists a ball B, /4(2), z € 0Q such that y € B, /4(z). But
then, since |z —y| < r/4, both x,y € B, ,4(y) C B,/2(2) and (3.24) follows from
(3.22). In any case, (3.24) follows if |z — y| < r/4.

If |z —y| > r/4 then

|D*u(x) — D*u(y)|
|z —yl|*

4« 4«

< —a|D2u(x) — D?u(y)| < 2— sup |D?u(z)] < (3.25)
T T 2eQ

24*C

<2
= ors

(I fllce @) + 1hllc2e + lullew))

where we used (3.23) in the last inequality. Notice that the constant in the
right hand side of (3.25) only depend on r and n, o, A, A, a;5, b;, ¢, Q. But r only
depend on Q so we may conclude that the constant in (3.25) will only depend
onn, o, A\ A, a;;,b;, c and Q.

We have thus proved (3.24) which together with (3.23) implies the estimate
(3.20). O



