

KTH Teknikvetenskap

SF2729 Groups and Rings
 Final Exam
 Wednesday, May 26, 2010

Time: 08.00-12.00
Allowed aids: none
Examiner: Mats Boij
This final exam consists of two parts; Part I (groups part) and Part II (rings part). The final credit for Part I will be based on the maximum of the results on the midterm exam and Part I in the final exam.

Each problem can give up to 6 points. In the first problem of each part, you are guaranteed a minimum given by the result of the corresponding homework assignment. If you have at least 2 points from HW1, you cannot get anything from Part a) of Problem 1 of Part I, if you have at least 4 points from HW1 you cannot get anything from Part a) or Part b) of Problem 1 of Part I. Similarly for HW2 and Problem 1 of Part II.

The minimum requirements for the various grades are according to the following table:

Grade	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}
Total credit	30	27	24	21	18
From Part I	13	12	11	9	8
From Part II	13	12	11	9	8

Present your solutions to the problems in a way such that arguments and calculations are easy to follow. Provide detailed arguments to your answers. An answer without explanation will give no points.
(1) (a) Show directly from the axioms that there is a unique group with three elements up to isomorphism.
(b) Show that the group $\mathrm{Gl}_{2}\left(\mathbb{F}_{2}\right)$ of invertible 2×2-matrices over the field $\mathbb{F}_{2}=\{0,1\}$ is isomorphic to the symmetric group S_{3} by giving an explicit isomorphism.
(c) Compute the center of the general linear group $\mathrm{Gl}_{n}(\mathbb{C})$, i.e., the group of invertible complex $n \times n$-matrices.
(2) (a) Define what it means for a group to act on a set and show that any group acts on itself by conjugation, i.e., by $a . b=a b a^{-1}$, for $a, b \in G$.
(b) Use 2 a to prove the class equation for a finite group G, i.e.,

$$
|G|=|Z(G)|+\sum_{i=1}^{r} \frac{|G|}{\left|C_{G}\left(a_{i}\right)\right|}
$$

where $C_{G}(a)=\{b \in G \mid a b=b a\}$ and $a_{1}, a_{2}, \ldots, a_{r}$ are representatives of all the non-trivial conjugacy classes in G.
(c) Use the class equation to show that any non-abelian group of order $2 p$, where p is an odd prime, has p elements of order 2 and $p-1$ elements of order p.
(3) (a) An automorphism of a group G is an isomorphism from G to itself. Show that the set $\operatorname{Aut}(G)$ of automorphisms of G forms a group under composition.
(b) Show that the set $\operatorname{Inn}(G)$ of inner automorphisms, i.e., $a \mapsto b a b^{-1}$, for some b in G, forms a subgroup of $\operatorname{Aut}(G)$.
c) Determine the automorphism group of the non-cyclic group of order 4 .

Part II - Rings

(1) Consider the ring $R=\mathbb{Z}_{5} \times \mathbb{Z}_{4} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3}$.
(a) Compute its characteristic, $\operatorname{char}(R)$.
(2)
(b) Show that $R \cong \mathbb{Z}_{60} \times \mathbb{Z}_{3}$ as rings.
(2)
(c) Let R be a commutative ring with unity and let I and J be two ideals in R satisfying $I+J=R$ and $I \cap J=(0)$. Show that $R \cong R / I \times R / J$.
(2) Consider the polynomial $p(x)=x^{3}+2 x^{2}-5 x-3$ as a polynomial in the polynomial rings $\mathbb{Q}[x]$ and $\mathbb{Z}_{5}[x]$, and let $R=\mathbb{Q}[x] /(p(x))$ and $S=\mathbb{Z}_{5}[x] /(p(x))$.
(a) Show that R is a vector space over \mathbb{Q} and that S is a vector space over \mathbb{Z}_{5}. What are the dimensions of these vector spaces?
(b) Determine whether R and/or S are integral domains or even fields?
(c) Show that R / P is a field whenever R is a PID and P is a prime ideal in R.
(3) Recall that a field extension L of a field F is called a splitting field of $f(x)$ over F if the following holds:
(i) $f(x)$ splits as a product of linear factors in $L[x]$.
(ii) If $L^{\prime} \subseteq L$ is another extension such that $f(x)$ splits as a product of linear factors in $L^{\prime}[x]$, then $L^{\prime}=L$.
(a) Show that $\mathbb{Q}(i)$ is a splitting field of $x^{2}-2 x+2$ over \mathbb{Q}.
(b) Let F be a field and let $f(x) \in F[x]$ be an irreducible polynomial of degree 2. Show that $F[x] /(f(x))$ is a splitting field of $f(x)$ over F of degree 2 .
(c) Give an example of a field F and an irreducible polynomial $p(x) \in F[x]$ of degree 3 such that $F[x] /(p(x))$ is not a splitting field for $f(x)$ over F.

