

KTH Teknikvetenskap

SF2729 Groups and Rings Final Exam Friday, May 27, 2011

Time: 14.00-18.00 Allowed aids: none Examiner: Mats Boij

This final exam consists of two parts; Part I (groups part) and Part II (rings part). The final credit for Part I will be based on the maximum of the results on the midterm exam and Part I in the final exam.

Each problem can give up to 6 points. In the first problem of each part, you are guaranteed a minimum given by the result of the corresponding homework assignment. If you have at least 2 points from HW1, you cannot get anything from Part a) of Problem 1 of Part I, if you have at least 4 points from HW1 you cannot get anything from Part a) or Part b) of Problem 1 of Part I. Similarly for HW2 and Problem 1 of Part II.

The minimum requirements for the various grades are according to the following table:

				D	
Total credit	30	27	24	21	18
From Part I	13	12	11	9	8
From Part II	13	12	11	9	8

Present your solutions to the problems in a way such that arguments and calculations are easy to follow. Provide detailed arguments to your answers. An answer without explanation will give no points.

- (1) (a) The axioms of a group only state the existence of an identity element e such that a * e = e * a = a for all a in the group. Show that this element is unique. (2)
 - (b) The dihedral group D_{2n} can be defined as the symmetries of a regular *n*-gon. Show that the center of D_{2n} is trivial if and only if *n* is odd. (2)

(2)

- (c) Determine the highest order of an element in the symmetric group S_{10} .
- (2) (a) The First Isomorphism Theorem says that there is an isomorphism $G/\ker\Phi \cong \operatorname{im}\Phi$ for any group homomorphism $\Phi: G \longrightarrow H$. Prove this theorem. (2)
 - (b) Use the First Isomorphism Theorem to show that Z²/K ≅ Z₂ × Z, where K ≤ Z² is the subgroup generated by (4,6). (*Hint*: Find a surjective group homomorphism Z² → Z₂ × Z with kernel K.)
- (3) When a group acts on itself by conjugation, the orbits are called *conjugacy classes*.
 - (a) Show that in a finite group, the size of the conjugacy class containing an element a is related to the number of elements commuting with a, i.e., the size of the centralizer, $C_G(a)$. (2)
 - (b) Use the relation to compute the size of the conjugacy class containing the matrix

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

in the general linear group $\operatorname{Gl}_2(\mathbb{F}_3)$ of invertible 2 × 2-matrices over the field with three elements. (Hint: the number of elements in $\operatorname{Gl}_2(\mathbb{F}_3)$ is 48.) (4)

- (1) (a) Prove that a 2×2 -matrix over a field is invertible if and only if the first column is a nonzero vector and the second column is not a multiple of the first column. (2)
 - (b) Let F_q be a finite field with q elements. Prove that the group Gl₂(F_q) of invertible 2 × 2-matrices over F_q has (q² − 1)(q² − q) elements. (2)
 (c) Determine the group d = (1 + 1)(q² − q) elements. (2)
 - (c) Determine the number of zero-divisors in the ring $M_2(\mathbb{F}_q)$ of 2×2 -matrices over \mathbb{F}_q .

(2)

- (2) (a) Prove that x³ x + 1 is irreducible in Z₃[x]. (2)
 (b) Let F be the field Z₃[x]/(x³ x + 1). Write γ for the element x + (x³ x + 1), so F = Z₃(γ). Determine the order of γ² in the multiplicative group F*. (2)
 (c) Let R be the ring Z[√-3]. Is the ideal (2, 1 + √-3) a principal ideal in R? (2)
- (3) (a) Prove that $f(x) = x^4 + 4x^2 + 2$ is irreducible in $\mathbb{Q}[x]$. (2)
 - (b) Let K be the field $\mathbb{Q}[x]/(f(x))$. Write α for the element x + (f(x)), so $K = \mathbb{Q}(\alpha)$. Put $\beta = \alpha^2$. Determine $[\mathbb{Q}(\beta) : \mathbb{Q}]$ and show that f(x) factors as a product of two polynomials of positive degree in $\mathbb{Q}(\beta)[x]$. (2)
 - (c) Prove that $\alpha^3 + 3\alpha$ is a zero of f(x) and conclude that f(x) factors as a product of linear factors in $\mathbb{Q}(\alpha)[x]$. (2)