

KTH Teknikvetenskap

SF2729 Groups and Rings Final Exam Wednesday, August 17, 2011

Time: 14.00-18.00 Allowed aids: none Examiner: Mats Boij

This final exam consists of two parts; Part I (groups part) and Part II (rings part). The final credit for Part I will be based on the maximum of the results on the midterm exam and Part I in the final exam.

Each problem can give up to 6 points. In the first problem of each part, you are guaranteed a minimum given by the result of the corresponding homework assignment. If you have at least 2 points from HW1, you cannot get anything from Part a) of Problem 1 of Part I, if you have at least 4 points from HW1 you cannot get anything from Part a) or Part b) of Problem 1 of Part I. Similarly for HW2 and Problem 1 of Part II.

The minimum requirements for the various grades are according to the following table:

Grade	Α	B	С	D	Ε
Total credit	30	27	24	21	18
From Part I	13	12	11	9	8
From Part II	13	12	11	9	8

Present your solutions to the problems in a way such that arguments and calculations are easy to follow. Provide detailed arguments to your answers. An answer without explanation will give no points.

 (1) (a) A <i>latin square</i> of size n × n is an n × n-array of symbols where each exactly once in each row and in each column. Show that the multiple a finite group has to be a latin square. (b) Let G be the set of invertible 2 × 2-matrices with coefficients in Z₆. a group under matrix multiplication. (c) Lagrange's theorem states that the order of a subgroup H of a finite g the order of G. Prove this theorem. 	symbol occurs ication table of (2) Show that G is (2) roup G divides (2)
(2) Let G be the group of invertible 2×2 -matrices with entries in \mathbb{Z}_6 from provide the second sec	oblem 1(b) and
let G act on $\mathbb{Z}_6 \times \mathbb{Z}_6$ seen as column vectors by matrix multiplication. Let	et $x = (1,0) \in$
$\mathbb{Z}_6 \times \mathbb{Z}_6.$	
(a) Determine the stabilizer G_x . ¹	(2)
(b) Determine the orbit Gx .	(2)
(c) Use the results of part (a) and (b) to determine the order of G .	(2)
(3) Let $\Phi: G \longrightarrow H$ be a surjective group homomorphism and $K \leq H$ a nor	mal subgroup.
(a) Show that the inverse image $\Phi^{-1}(K)$ is a normal subgroup of G.	(2)

- (a) Show that the inverse image $\Phi^{-1}(K)$ is a normal subgroup of G. (2) (b) Show that $G/\Phi^{-1}(K)$ is isomorphic to H/K. (2)
- (c) Assume that K equals the commutator subgroup [H, H]. Show that $\Phi^{-1}(K)$ contains [G, G]. Does equality hold? (2)

¹The stabilizer is also called the *isotropy subgroup*.

(1)	(a) Let F be a finite field. Assume that -1 is not a square in F. Prove that 2 or -2	is a (2)
	(b) Prove that $X^4 + 1$ is irreducible in $\mathbb{Z}[X]$.	(2)
	(c) Let p be a prime number and let \mathbb{F}_p be a finite field with p elements. Prove that X^* is reducible in $\mathbb{F}_p[X]$. (Hint: use part (a) when -1 is not a square in \mathbb{F}_p .)	*+1 (2)
(2)	 (a) Prove that 3 + 2i is a prime element of Z[i]. (b) Prove that F = Z[i]/Z[i](3 + 2i) is a field. How many elements does F have? (c) Find a generator of the multiplicative group of F. 	(2) (2) (2)
(3)	 (a) Prove that the ring R[X]/(X³ - X² + 2X - 2) is isomorphic to R × C. (b) Let p be a prime number. Let R be the subring of Q consisting of the numbers with a, b ∈ Z and b not divisible by p. Let I be a nonzero ideal of R. Prove I = (pⁿ) for some n ≥ 0. Conclude that R has a unique maximal ideal. 	(2) a/b that (4)