

KTH Teknikvetenskap

SF2729 Groups and Rings
 Final Exam
 Wednesday, August 17, 2011

Time: 14.00-18.00
Allowed aids: none
Examiner: Mats Boij
This final exam consists of two parts; Part I (groups part) and Part II (rings part). The final credit for Part I will be based on the maximum of the results on the midterm exam and Part I in the final exam.

Each problem can give up to 6 points. In the first problem of each part, you are guaranteed a minimum given by the result of the corresponding homework assignment. If you have at least 2 points from HW1, you cannot get anything from Part a) of Problem 1 of Part I, if you have at least 4 points from HW1 you cannot get anything from Part a) or Part b) of Problem 1 of Part I. Similarly for HW2 and Problem 1 of Part II.

The minimum requirements for the various grades are according to the following table:

Grade	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}
Total credit	30	27	24	21	18
From Part I	13	12	11	9	8
From Part II	13	12	11	9	8

Present your solutions to the problems in a way such that arguments and calculations are easy to follow. Provide detailed arguments to your answers. An answer without explanation will give no points.
(1) (a) A latin square of size $n \times n$ is an $n \times n$-array of symbols where each symbol occurs exactly once in each row and in each column. Show that the multiplication table of a finite group has to be a latin square.
(b) Let G be the set of invertible 2×2-matrices with coefficients in \mathbb{Z}_{6}. Show that G is a group under matrix multiplication.
(c) Lagrange's theorem states that the order of a subgroup H of a finite group G divides the order of G. Prove this theorem.
(2) Let G be the group of invertible 2×2-matrices with entries in \mathbb{Z}_{6} from problem 1(b) and let G act on $\mathbb{Z}_{6} \times \mathbb{Z}_{6}$ seen as column vectors by matrix multiplication. Let $x=(1,0) \in$ $\mathbb{Z}_{6} \times \mathbb{Z}_{6}$.
(a) Determine the stabilizer G_{x}. ${ }^{1}$
(b) Determine the orbit $G x$.
(c) Use the results of part (a) and (b) to determine the order of G.
(3) Let $\Phi: G \longrightarrow H$ be a surjective group homomorphism and $K \leq H$ a normal subgroup.
(a) Show that the inverse image $\Phi^{-1}(K)$ is a normal subgroup of G.
(b) Show that $G / \Phi^{-1}(K)$ is isomorphic to H / K.
(c) Assume that K equals the commutator subgroup $[H, H]$. Show that $\Phi^{-1}(K)$ contains $[G, G]$. Does equality hold?

[^0]
Part II - Rings

(1) (a) Let F be a finite field. Assume that -1 is not a square in F. Prove that 2 or -2 is a square in F.
(b) Prove that $X^{4}+1$ is irreducible in $\mathbb{Z}[X]$.
(c) Let p be a prime number and let \mathbb{F}_{p} be a finite field with p elements. Prove that $X^{4}+1$ is reducible in $\mathbb{F}_{p}[X]$. (Hint: use part (a) when -1 is not a square in \mathbb{F}_{p}.)
(2) (a) Prove that $3+2 i$ is a prime element of $\mathbb{Z}[i]$.
(b) Prove that $F=\mathbb{Z}[i] / \mathbb{Z}[i](3+2 i)$ is a field. How many elements does F have?
(c) Find a generator of the multiplicative group of F.
(3) (a) Prove that the ring $\mathbb{R}[X] /\left(X^{3}-X^{2}+2 X-2\right)$ is isomorphic to $\mathbb{R} \times \mathbb{C}$.
(b) Let p be a prime number. Let R be the subring of \mathbb{Q} consisting of the numbers a / b with $a, b \in \mathbb{Z}$ and b not divisible by p. Let I be a nonzero ideal of R. Prove that $I=\left(p^{n}\right)$ for some $n \geq 0$. Conclude that R has a unique maximal ideal.

[^0]: ${ }^{1}$ The stabilizer is also called the isotropy subgroup.

