
SF2729 Groups and Rings
Suggested solutions to the final exam

Wednesday, May 26, 2010

PART I - GROUPS

(1) (a) Show directly from the axioms that there is a unique group with three elements up
to isomorphism. (2)

(b) Show that the groupGl2(F2) of invertible2 × 2-matrices over the fieldF2 = {0, 1}
is isomorphic to the symmetric groupS3 by giving an explicit isomorphism. (2)

(c) Compute the center of the general linear groupGln(C), i.e., the group of invertible
complexn × n-matrices. (2)

SOLUTION

a). Denote the three elements bye, a andb, wheree is the unit element. We then have
thate ∗ e = e, a ∗ e = e ∗ a = a ande ∗ b = b ∗ e = b. Thus the group table is given by

∗ e a b
e e a b
a a ? ?
b b ? ?

Suppose thata∗a = a. Since we have an inverse toa, saya−1, we get by multiplication
to the left that

a−1 ∗ (a ∗ a) = a−1 ∗ a = e

but by the associativity, we getA−1 ∗ (a ∗ a) = (a−1 ∗ a) ∗ a = e ∗ a = a, which is a
contradiction sincea ande are supposed to be distinct elements. In the same way, we get
thatb ∗ b 6= b.

If a ∗ b = a, we get

e = a−1 ∗ a = a−1 ∗ (a ∗ b) = (a−1 ∗ a) ∗ b = e ∗ b = b

and ifa ∗ b = b, we get

e = b ∗ b−1 = (a ∗ b) ∗ b−1 = a ∗ (b ∗ b−1) = a ∗ e = a.

Thus we conclude thata ∗ b = e and by symmetry in the argument, we also getb ∗ a = e.
If a ∗ a = e, we get that

b = e ∗ b = (a ∗ a) ∗ b = a ∗ (a ∗ b) = a ∗ e = a,
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contradictinga 6= b. By symmety, we getb ∗ b 6= e.
We have already seen thata∗a 6= a and thus we must havea∗a = b. By the symmetry

we also getb ∗ b = a.
We have concluded that the group table has to be

∗ e a b
e e a b
a a b e
b b e a

b). There are six invertible matrices inGl2(F2), since the first row can be chosen as any
of the three non-zero rows and the second as anything but the two multiples of the first.

Thus we have the six matrices

I =

(

1 0
0 1

)

, A =

(

1 0
1 1

)

, B =

(

0 1
1 1

)

,

C =

(

0 1
1 0

)

, D =

(

1 1
1 0

)

, E =

(

1 1
0 1

)

,

We have thatI is the unity andA, C andE are their own inverses, sinceA2 = C2 =
E2 = I. The remaining elementsB andD have order three sinceB2 = D, D2 = B and
B3 = B(B2) = BD = I = D2D = D3.

We can find an explicit isomorphism toS3 by sending the generatorsA and C to
s1 = (1 2) ands2 = (2 3), respectively. Thus we get

Φ(I) = Id, Φ(A) = (1 2), Φ(C) = (2 3),
Φ(B) = Φ(AC) = (1 2)(2 3) = (1 2 3),
Φ(D) = Φ(CBC) = (2 3)(1 2 3)(2 3) = (1 3 2)
Φ(E) = Φ(CAC) = (2 3)(1 2)(2 3) = (1 3).

We can check that the group tables are the same:

· I A B C D E
I I A B C D E
A A I C B E D
B B E D A I C
C C D E I A B
D D C I E B A
E E C A D C I

c). An element in the center commutes with every element in the group and in particular,
we have that it commutes with all the elementary matricesEij, corresponding to inter-
schanging rowi and rowj, when multiplying to the left. However, when multiplying to
the right it corresponds to interchanging columnsi andj.

(2) (a) Define what it means for a group to act on a set and show that any group acts on
itself by conjugation, i.e., bya.b = aba−1, for a, b ∈ G. (2)



SF2729 - Final Exam 2010-05-26 3

(b) Use 2a to prove theclass equation for a finite groupG, i.e.,

|G| = |Z(G)| +
r

∑

i=1

|G|
|CG(ai)|

whereCG(a) = {b ∈ G|ab = ba} anda1, a2, . . . , ar are representatives of all the
non-trivial conjugacy classes inG. (2)

(c) Use the class equation to show that any non-abelian groupof order2p, wherep is an
odd prime, hasp elements of order2 andp − 1 elements of orderp. (2)

SOLUTION

a). The conjugation definines a function

G × G −→ G

sending(a, b) to aba−1. We have to check that it satisfies the conditions of a group action,
i.e.,
(a) e.x = x, for all x ∈ G.
(b) (ab).x = a.(b.x), for all a, b ∈ G and for allx ∈ G.

We have 2a sinceexe−1 = x for all x ∈ G and we have 2b since

(ab).x = (ab)x(ab)−1 = abxb−1a−1 = a(bxb−1)a−1 = a.(b.x)

for all a, b ∈ G and allx ∈ G.

b). The conjugacy classes are the orbits ofG under the action by conjugation. Thus they
partitionG into disjoint subsets. The stabilizor of an elementa under this action is given
by

Ga = {b ∈ G|bab−1 = a} = {b ∈ G|ba = ab} = CG(a).

Hence we get that the size of the orbit ofa is given by

[Ga| =
|G|
|Ga|

=
|G|

|CG(a)| .

The orbit is trivial, i.e., contains onlya, if and only ifCG(a) = G, which is equivalent to
thata commutes with all elements inG. Thus we can collect all trivial conjugacy classes
and the union of them will be the center ofG. Thus the class equation is the consequence
of the partition ofG into the center and the the non-trivial conjugacy classes.

c). If G has order2p wherep is an odd prime, the only possibilities for the order of a
subgroup are1, 2, p and2p by Lagrange’s theorem. Thus we have that the non-trivial
conjugacy classes have2 or p elements, since not all elements are in the same conjugacy
class.

In the class equation, we have2p on the left hand side and hence there cannot be two
terms of sizep in the sum, since the center contains at least one element. Ifthere is no
term of sizep, we have that the center must be of size2 or 2p since all other terms are
even. In the latter caseG would be abelian, which it is supposed not to be. Thus we
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conclude that|Z(G)| = 2, but since the center is in all the centralizersCG(a), these have
to have order2 as well, which would give terms of sizep in the sum.

Hence there must be exactly one term of sizep in the sum. The center would then either
have order1 or p. Again, the center is contained in all the centralizers, which contradicts
that one of the centralizers has order2 if the center has orderp. Hence the center must be
trivial and there is one conjugacy class of sizep and(p − 1)/2 conjugacy classes of size
2.

The centralizer,CG(a) contains the subgroup generated bya. Hence the elements in
the conjugacy classes of size2 generates a subgroup of a group of orderp, which means
that they have to have orderp. In the same way, the elements in the conjugacy class of
sizep generates subgroups of a group of order2, which shows that they have order2. We
have concluded that there are exactlyp elements of order2 andp − 1 elements of order
p.

(3) (a) An automorphism of a groupG is an isomorphism fromG to itself. Show that the
setAut(G) of automorphisms ofG forms a group under composition. (2)

(b) Show that the setInn(G) of inner automorphisms, i.e.,a 7→ bab−1, for someb in G,
forms a subgroup ofAut(G). (2)

c) Determine the automorphism group of the non-cyclic groupof order4. (2)

SOLUTION

a). Composition of functionsX → X satisfies associativity since there is a well define

notion of composition of three mapsX
Φ→ X

Ψ→ X
Ξ→ X.

The identity map is a unity for composition and bijective maps are invertible with a
bijective inverse. This shows that the set of bijective mapson a setX forms a group under
composition. We now look at the subset of bijective homomorphisms of a groupG. If Φ
andΨ are homomorphisms, we have that

Ψ ◦ Φ(ab) = Ψ(Φ(ab)) = Ψ(Φ(a)Φ(b)) = Ψ(Φ(a))Ψ(Φ(b))

for anya, b ∈ G. ThusΦ ◦ Φ is also a homomorphism.
Furthermore, ifΦ is bijective, it has an inverseΦ−1 and we get that

Φ−1(ab) = Φ−1(ΦΦ−1(a)ΦΦ−1(b)) = Φ−1(Φ(Φ−1(a)Φ−1(b)) = φ−1(a)Φ−1(b)

which shows thatΦ−1 is also a homomorphism. Thus the set of bijective homomorphisms
form a subgroup of the symmetric group onG.

b). Let a be any element of a groupG. Then the mapΦa definied by

Φa(b) = abbb−1

defines a homomorphism ofG since

Φa(bc) = abca−1 = aba−1aca−1 = Φa(b)Φa(c)
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and it is bijective since

Φa ◦ Φa−1(b) = a(a−1b(a−1)−1)a−1 = (aa−1)b(aa−1) = b

for any elementb ∈ G.
The composition of two inner automorphisms,Φa andΦb is given byΦab since

Φa ◦ Φb(c) = a(b(cb−1)a−1 = (ab)c(ab)−1 = Φab

for all elementsc ∈ G. Furthermore, as we saw before, the inverse of en inner atuomoprp-
hismΦa is Φa−1 , which is also an inner arutomorphism. HenceInn(G) is a subgroup of
Aut(G).

c). The non-cyclic groupG of order four has three elements of order2. As we saw
in part a) the automorphism group is a subgroup of the symmetric group onG. Since
an automorphism has to send the unit element to the unit element, we have that the
automorphism group is a subgroup of the stabilizer of the unit element, which means that
it is isomorphic to a subgroup ofS3.

Now, write the groupG asG = {e, a, b, c}, wherea, b, c are the elements of order two.
The groupG can be presented by the generatorsa andb with the relationsa2 = b2 = e

andab = ba. An automorphism is determined by the images of the generators, which in
turn have to be a generating set of the group and have to satisfy the same relations.

There are six possiblilities of finding an ordered pairs of generators:

{a, b}, {a, c}, {b, a}, {b, c}, {c, a} and{c, b}.
Each of these generator pairs satifsy the same relations, since

a2 = b2 = c2 = e andab = ba, bc = cb, ac = ca.

Thus we have six different automorphism and hence the automorphism group is isomorp-
hic toS3.
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PART II - R INGS

(1) Consider the ringR = Z5 × Z4 × Z3 × Z3.
(a) Compute its characteristic,char(R). (2)
(b) Show thatR

∼

= Z60 × Z3 as rings. (2)
(c) LetR be a commutative ring with unity and letI andJ be two ideals inR satisfying

I + J = R andI ∩ J = (0). Show thatR
∼

= R/I × R/J . (2)

SOLUTION

a). For all(n1, n2, n3, n4) ∈ Z5×Z4×Z3×Z3 and an integerk it is k(n1, n2, n3, n4) = 0
only if 3/k, 4/k, 5/k, which implies that the minimum suchk must be thel.c.m(3, 5, 4) =
60.

b). The ring homomorphism:

φ : Z → Z5 × Z4 × Z3, n 7→ ([n]5, [n]4, [n]5)

is an a surjective ring homomorphism withKer(φ) = 60Z (because3, 4, 5 are relatively
prime). The fundamental isomorphism theorem for rings thenimplies that

Z/60Z ∼= Z5 × Z4 × Z3.

It follows that
(φ, id) : Z60 × Z3 → Z5 × Z4 × Z3 × Z3

is also a ring isomorphism.

c). Consider the projection maps:φ1 : R → R/I, φ2 : R → R/J. Becauseφ1, φ2 are
ring homomorphisms the product map:

φ : R → R/I × R/J, φ(r) = (φ1(r), φ2(r))

is a ring homomorphism, where the ringR/I ×R/J has the coordinate-wise operations.
The kernel is

Ker(φ) = {r, r ∈ I andr ∈ J} = I ∩ J = (0).

Moreover becauseR = I + J for every (a + I, b + J) ∈ R/I × R/J we have that
a = a1 + a2 wherea1 ∈ I, a2 ∈ J anda + I = a2 + I. Similarly b = b1 + b2 where
b1 ∈ I, b2 ∈ J andb+j = b1 +j. Which means thatφ(a2 +b1) = (a+I, b+J). showing
thatIm(φ) = R/I × R/J. By the fundamental isomorphism theorem we have that

R/Ker(φ) = R ∼= Im(φ) = R/I × R/J.

(2) Consider the polynomialp(x) = x3 + 2x2 − 5x − 3 as a polynomial in the polynomial
ringsQ[x] andZ5[x], and letR = Q[x]/(p(x)) andS = Z5[x]/(p(x)).
(a) Show thatR is a vector space overQ and thatS is a vector space overZ5. What are

the dimensions of these vector spaces? (2)
(b) Determine whetherR and/orS are integral domains or even fields? (2)
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(c) Show thatR/P is a field wheneverR is a PID andP is a prime ideal inR. (2)

SOLUTION

a). R andS are both abelian groups, therefore we have to show that they have a scalar
multiplication satisfying the necessary properties. We dothis for R, the prove forS is
similar.

Define the scalar product as:

Q × Q[x]/(p(x)) → Q[x]/(p(x)) (a, f(x) + (p(x))) 7→ af(x) + (p(x)).

It satisfies the properties:
• (ab)(f(x) + (p(x))) = (ab)f(x) + (p(x)) = (a)(bf(x) + (p(x))).
• (a+b)(f(x)+(p(x))) = (a+b)f(x)+(p(x)) = (a)f(x)+(p(x)))+a)f(x)+(p(x))).
• a(f(x) + g(x) + (p(x))) = af(x) + ag(x) + (p(x)).
• 1(f(x) + (p(x))) = f(x) + (p(x)).
Notice that every elementf in R (resp. inS) can be divided byp and can be written as

f = mp + r wherem ∈ Q andr ∈ R (resp. inS) is the class of a polynomial of degree
at most2. This shows thatS = span([1], [x], [x2]). Moreover[1], [x], [x2] are linearly
independent overQ and thus

dimQ(S) = dimQ(R) = 3.

b). An ideal inR andS is maximal if and only if prime. Moreover an ideal is prime if
and only if its generator (recall thatR andS are PID) is irreducible.

One sees immediately thatp(x) = x3 + 2x2 − 5x − 3 has the root1 in Z5 and thusS
is neither a field nor an integral domain.

The polynomialp(x) = x3 + 2x2 − 5x − 3 is going to be irreducible overQ if we
prove that it is irreducible overZ. If p is reducinble it would have at least one simple root
α which should be an integer dividing−3. The only possibilities are−3. − 1, 1, 3 which
are not roots. It follows thatR is a field.

c). Let I = (a) be a prime ideal and assumeI ⊂ J ⊂ R. Let J = (b), thena = bc for
some elementc ∈ R. BecauseI is prime then it isb ∈ I which impliesI = J or c ∈ I,
i.e. c = ad and thus (becauseR is a domain)bc = 1 implying thatJ = R.

(3) Recall that a field extensionL of a fieldF is called a splitting field off(x) overF if the
following holds:
(i) f(x) splits as a product of linear factors inL[x].

(ii) If L′ ⊆ L is another extension such thatf(x) splits as a product of linear factors in
L′[x], thenL′ = L.

(a) Show thatQ(i) is a splitting field ofx2 − 2x + 2 overQ. (2)
(b) LetF be a field and letf(x) ∈ F [x] be an irreducible polynomial of degree2. Show

thatF [x]/(f(x)) is a splitting field off(x) overF of degree2. (2)
(c) Give an example of a fieldF and an irreducible polynomialp(x) ∈ F [x] of degree

3 such thatF [x]/(p(x)) is not a splitting field forf(x) overF . (2)



8 SF2729 - Final Exam 2010-05-26

SOLUTION

a). Becausex2 − 2x + 2 = (x − 1 + i)(x − 1 − i) the extensionQ(i) contains both
roots. Any other algebraic extension,L, containing the two roots would have to contain
the rational numbers and the complex numberi giving Q(i) ⊂ L.

b). Let α = x+(f(x)) ∈ F [x]/(f(x)). It is evα(f(x)) = 0 ∈ F [x]/(f(x)) and thusα is
a root off . It follows thatf(x) = (x−α)(ax−β) for somea, β ∈ F [x]/(f(x)) and thus
both roots must lie inF [x]/(f(x)). Moreover LetL be any other extension containingα.
Becausef is irreducible overF andα 6∈ F the degree[Q(α) : Q] = 2. Moreover because
Q(α) ⊂ F [x]/(f(x)) and they are both of degree2 it must beQ(α) = F [x]/(f(x)). But
Q(α) ⊂ L and thusF [x]/(f(x)) ⊂ L.

c). ConsiderF = Q andp(x) = x3 − 2. The extensionQ[x]/x3 − 2 = Q( 3
√

2), because
x3 − 2 is the minimal polynomial of3

√
2 overQ. The other roots ofp areξ 3

√
2 andξ2 3

√
2

whereξ ∈ C is a third root of unity. It follows that the splitting field for f(x) overF is
Q( 3

√
2, ξ) 6= Q( 3

√
2) = Q[x]/x3 − 2.


