

KTH Teknikvetenskap

SF2729 Groups and Rings
 Suggested solutions to the final exam
 Thursday, August 19, 2010

Part I - Groups

(1) (a) Give an example of a binary operation on $S=\{1,2,3\}$ which is commutative with a unit, but which fails to be associative.
(b) Show that any finite cyclic group has exactly one subgroup of any order dividing the order of the group.
(c) For all integers $n \geq 2$, compute the center of the dihedral group, $D_{2 n}$, i.e. the group of symmetries of a regular n-gon.

Solution

a). Assume that 1 is the unit element. If we have that $a * b=1$ and $b * c=1$, we get that $(a * b) * c=1 * c=c$, while $a *(b * c)=a * 1=a$, so if $a \neq c$, the operation is not associative. We can acheive this if $a * b=1$ whenever $a \neq 1$ and $b \neq 1$. In order for the operation to be commutative, we need that the table is symmetric. Hence the following operation satisfies the criteria:

$*$	1	2	3
1	1	2	3
2	2	1	1
3	3	1	1

since for example $(2 * 2) * 3=1 * 3=3$, while $2 *(2 * 3)=2 * 1=2$.
b). We can assume that our cyclic group is of order n and equals \mathbb{Z}_{n} under addition since all cyclic groups of the same order are isomorphic.

Let d be any divisor of n. We can define a subgroup of order d as

$$
\left\langle[n / d]_{n}\right\rangle=\left\{[n / d]_{n},[2 n / d]_{n}, 3[n / d]_{n}, \ldots, d[n / d]_{n}=0\right\}
$$

Let H be any subgroup of \mathbb{Z}_{n} of order d and let a be the least positive integer such that $[a]_{d} \in H$. Then H consists of all multiples of $[a]_{n}$. In fact, if $[b]_{n}$ is in H we can divide b by a and get $b=q a+r$, where $0 \leq r<a$. Since H is a subgroup we have that $[r]_{n}=[b]_{n}-q[a]_{n}$ is also in H and by the minimality of a we get that $r=0$ and hence $[b]_{n}=q[a]_{n}$.

Now H has order n / a and we deduce that H is exactly the subgroup of order d given before. Hence there is exactly one subgroup of order d for any d dividing n.
c). The symmetries of a regular n-gon consists of n rotations, including the trivial rotation which is the unit element, together with n reflections. Let r be a rotation generating the rotation subgroup and let s be any of the reflections. Then $D_{2 n}$ is generated by r and s. In order to find the center, it is sufficient to find all the elements which commute with both generators.

We can write any of the rotations as r^{i} for some $i=0,1, \ldots, n-1$. In trivially commutes with r, but in order to commute with s, we have to have

$$
r^{i} s=s r^{i}
$$

We have the relation $s r=r^{-1} s$, which comes from that when we conjugate a rotation by a reflection, we get the reverse rotation. Hence we have that $r^{i} s=s r^{-i}$ and in order for r^{i} to commute with s, we need $s r^{i}=s r^{-i}$, which is equivalent to $r^{2 i}=1$. Thus we conclude that the only rotations that are in the center are $r^{0}=1$ and $r^{n / 2}$ if n is even.

The reflections can be written as $s r^{i}$ and for this to commute with s we need

$$
s s r^{i}=s r^{i} s \Longleftrightarrow r^{i}=r^{-i}
$$

but in order to commute with r we need

$$
r s r^{i}=s r^{i} r \Longleftrightarrow r^{i-1}=r^{i+1} \Longleftrightarrow r^{2}=1
$$

Hence a reflection is in the center if and only if $n=2$, in which case the group is of order 4 and abelian. Hence for $n \geq 2$ we have that the center is trivial for odd n and equal to $\left\{1, r^{n / 2}\right\}$ for even n.
(2) (a) Show that the center of any group is a normal subgroup and deduce that any simple group has a trivial center.
(b) Let $\Phi: G \longrightarrow H$ be a group homomorphism and let K be a normal subgroup of H. Show that $\Phi^{-1}(K)=\{a \in G \mid \Phi(a) \in K\}$ is a normal subgroup of G.
(c) Show that in the situation described in (2b) we get an induced homomorphism

$$
\tilde{\Phi}: G / \Phi^{-1}(K) \longrightarrow H / K
$$

Solution

a). Let $Z=Z(G)$ be the center of a group G and let z be any element of Z. Then we have that

$$
a z a^{-1}=z a a^{-1}=z
$$

for any element $a \in G$. Hence $a Z a^{-1}=Z$ and Z is normal. A simple group has no non-trivial normal subgroups and hence its center has to be trivial since it is normal.
b). Let a be any element of G and let b be any element of $\Phi^{-1}(K)$. Then we have that $\Phi(b) \in K$ and we get that

$$
\Phi\left(a b a^{-1}\right)=\Phi(a) \Phi(b) \Phi\left(a^{-1}\right)=\Phi(a) \Phi(b) \Phi(a)^{-1} \in K
$$

since $\Phi(b) \in K$ and K is normal. We thus have that $a b a^{-1}$ is in $\Phi^{-1}(K)$ and hence $\Phi^{-1}(K)$ is normal.
c). We define the homomorphism $\tilde{\Phi}: G / \Phi^{-1}(K) \longrightarrow H / K$ by $\tilde{\Phi}\left(a \Phi^{-1}(K)\right)=\Phi(a) K$, for $a \in G$. We have to check that this is well-defined. If $a \Phi^{-1}(K)=b \Phi^{-1}(K)$ we have that $a^{-1} b \in \Phi^{-1}(K)$ and hence $\Phi\left(a^{-1} b\right) \in K$ and $\Phi(a) K=\Phi(b) K$, which shows that the result doesn't depend on which representative we choose for the cosets of $\Phi^{-1}(K)$.

Furthermore, $\tilde{\Phi}$ is a homomorphism since

$$
\begin{aligned}
\tilde{\Phi}\left(a \Phi^{-1}(K) b \Phi^{-1}(K)\right) & =\tilde{\Phi}\left(a b \Phi^{-1}(K)\right)=\Phi(a b) K=\Phi(a) K \Phi(b) K \\
& =\tilde{\Phi}\left(a \Phi^{-1}(K)\right) \tilde{\Phi}\left(b \Phi^{-1}(K)\right) .
\end{aligned}
$$

(3) A group G which acts on a set X is said to act freely if all stabilizers are trivial.
(a) Show that any group acts freely on itself by left multiplication.
(b) Show that if a finite group G acts freely on a non-empty set X, then $|X| \geq|G|$. (2)
(c) Show that any free action of a group G can be identified with the action of the group on a union of copies G where G acts by left multiplication on each copy of G.

Solution

a). A group acts on itself by left multiplication as we have that

$$
e . a=e * a=a, \quad \forall a \in G,
$$

and

$$
a \cdot(b . c)=a *(b * c)=(a * b) * c=(a * b) \cdot c .
$$

This action is free since $a . b=b \Longleftrightarrow a * b=b \Longleftrightarrow a=e$. Hence the stabilizer G_{b} is trivial for any element b in G.
b). If G is a finite group acting on a set X we have that $|G|=|G x|\left|G_{x}\right|$ for any element x in X. If the action is free we have that all orbits have size $|G|$. Since X is a disjoint union of the orbits under the action X contains at least one subset of size $|G|$.
c). Let G be a group that acts freely on a set X and let B be a subset of X consisting of exactly one element from each orbit. Then we can identify X with $B \times G$ under the map

$$
\begin{array}{rll}
G \times B & \longrightarrow X \\
(a, b) & \longmapsto a . b
\end{array}
$$

The map is surjective since X is the union of the orbits and each orbit is mapped onto by $G \times\{b\}$, where b is the element in B corresponding to the orbit. It is injective since $a . b=c . d$ implies that $b=d$ since B has only one element from each orbit, and hence $a . b=c . b$ which implies that $a^{-1} c$ is in G_{b}. Since the action is free, we deduce that $a=c$ and the map is injective.

When identifying $G \times B$ with X in this way, we get that the action of G on X corresponds to an action of G on $G \times B$ given by

$$
c \cdot(a, b)=c .(a . b)=(c a) . b
$$

Thus the action is equivalent to left muliplication on each orbit.

Part II - Rings

(1) Consider the function $\phi: \mathbb{Z}[x] \rightarrow \mathbb{Z}_{8}$ defined by $f(x) \mapsto[f(3)]_{8}$.
(a) Show that ϕ is a ring homomorphism.
(b) Show that $\operatorname{ker}(\phi)$ is not a prime ideal.
(c) Show that $\operatorname{ker}(\phi)$ is finitely generated and find a finite set of generators.

Solution

a). $\phi((f+g)(x))=[(f+g)(3)]_{8}=[f(3)]_{8}+[g(3)]_{8}=\phi(f)+\phi(g), \phi((f \cdot g)(x))=$ $[(f \cdot g)(3)]_{8}=[f(3)]_{8} \cdot[g(3)]_{8}=\phi(f) \cdot \phi(g)$
b). ϕ is surjective since for every $[k]_{8} \in \mathbb{Z}_{8}$ we have that $\phi\left([k]_{8}\right)=[k]_{8}$. The fundametal theorem of ring homomorphisms implies that

$$
\mathbb{Z}[x] / \operatorname{Ker}(\phi) \cong \mathbb{Z}_{8}
$$

Because $\mathbb{Z}[x]$ is a commutative ring with unity and because \mathbb{Z}_{8} is not an integral domain (for ex. $[2]_{8} \cdot[4]_{8}=0$) the ideal $\operatorname{ker}(\phi)$ cannot be prime.
c). We see that $\operatorname{ker}(\phi)=\left\{f(x) \|[f(3)]_{8}=0\right\}$. Clearly $x-3$ and 8 belong to $\operatorname{ker}(\phi)$ so that $\langle x-3,8>\subseteq \operatorname{ker}(\phi)$. Let $f(x) \in \operatorname{ker}(\phi)$. Because $x-3$ is monic the division theorem implies that

$$
f(x)=(x-3) q(x)+r(x)
$$

with $r(x)=0$ or $\operatorname{deg}(r(x))=0$. Assume $r(x)=r \in \mathbb{Z}$. Because $[f(3)]_{8}=0$ it follows that $[r]_{8}=0$ and thus $r \in 8 \mathbb{Z}$. This shows that $f(x)$ can be written as a combination of $(x-3)$ and 8 which implies that $\operatorname{ker}(\phi) \subseteq<x-3,8>$ and thus

$$
\operatorname{ker}(\phi)=<x-3,8>
$$

(2) Consider the field with q elements, \mathbb{F}_{q}, and the polynomial $f(x)=x^{2}+1 \in \mathbb{F}_{q}[x]$. Let $K=\mathbb{F}_{q}[x] /(f(x))$.
(a) Compute the number of elements in K.
(b) Determine all integers q for which K is a field.

Solution

a). Observe that K is a vector field over \mathbb{F}_{q} of dimension 2 . In fact it is

$$
K=\left\{a_{0}+a_{1} x, a_{0}, a_{1} \in \mathbb{F}_{q}\right\} .
$$

Moreover the elements $1, x$ are linearly independet so that $\{1, x\}$ is a basis of K as a vector space over \mathbb{F}_{q} and thus $|K|=q^{2}$.
b). Because \mathbb{F}_{q} is a field the integer q must be a power of a prime. Moreover $\mathbb{F}_{q}[x]$ is an Eucledian Domain and thus a PID. This implies that the ideal generated by the polynomial $f(x)$ is maximal if and only if $f(x)$ is irreducible and thus K is a field if and only if $f(x)$ is irreducible. Because $\operatorname{char}\left(\mathbb{F}_{q}\right)=2$ for all even q the polynomial is reducible for all such q. In fact we have that

$$
\left(x^{2}+1\right)=(x+1)^{2} .
$$

Assume that q is odd. The polynomial $f(x)$ is irreducible if only if it has no root in \mathbb{F}_{q}, i.e. if there i no element $\alpha \in \mathbb{F}_{q}$ such that $\alpha^{2}=-1$. Assume that $f(x)$ is reducible, then there is an element $\alpha \in \mathbb{F}_{q}$ such that $\alpha^{2}=-1$. This means that α has order 4 in the group $\left(\mathbb{F}_{q}^{*}, \cdot\right)$. By Lagrange theorem the $4 /\left|\mathbb{F}_{q}^{*}\right|=q-1$, so that $q \equiv 1 \bmod 4$. Conversely if $q \equiv 1 \bmod 4$, then 4 divides $q-1$ and since \mathbb{F}_{q}^{*} is cyclic, there is an element $a \in \mathbb{F}_{q}^{*}$ of order 4, i.e. an element a such that $a^{4}=1$ and $a \neq \pm 1$. This implies that $\alpha^{2}=-1$. We can conlude that K is a field if and only if q is odd and it is not congruent to 1 modulo 4. This is equivalent to $q \equiv 3(\bmod 4)$, and since q is a prime power it is an odd power of a prime p satisfying $p \equiv 3(\bmod 4)$.
(3) Let A be a commutative ring with unity. An element $a \in A$ is said to be nilpotent if $a^{k}=0$ for some k. Let $N(A)$ be the set of all nilpotent elements of A.
(a) Show that $N(A)$ is an ideal.
(b) Show that all $N(A)$ is contained in every prime ideal of A.
(c) Show that $N(A)$ is the intersection of all prime ideals of A.

Solution

a). First we show that $N(A)$ is closed under addition. Let a and b be elements in $N(A)$. Then there are integers k and m such that $a^{k}=0$ and $b^{m}=0$ and since A is commutative we can use the binomial theorem to get that

$$
(a+b)^{k+m}=\sum_{i=0}^{k+m}\binom{k+m}{i} a^{i} b^{k+m-i}
$$

which is zero since $a^{i}=0$ for $i \geq k$ and $b^{k+m-i}=0$ for $i \leq k$. Hence $a+b \in N(A)$.
We now show that $N(A)$ is closed under multiplication by elements from A. Let $a \in A$ and $b \in N(A)$. There is k such that $b^{k}=0$. Because A is commutative it is $(a \cdot b)^{k}=a^{k} \cdot b^{k}$ and thus $(a \cdot b)^{k}=a^{k} \cdot 0=0$ which implies that $a \cdot b \in N(A)$.
b). Let $x \in N(A)$. Then there is k such that $x^{k}=0$. For every prime ideal P of A we have that $0 \in P$ and thus $x^{k} \in P$. From the definition of prime ideal it follows that $x \in P$.
c). We have shown in the previous part that:

$$
N(A) \subseteq \bigcap_{P \text { prime }} P .
$$

Let now $x \notin N(A)$. We will show that there is a prime ideal P such that $x \notin P$, which will imply that $N(A)=\bigcap_{P \text { prime }} P$. Let $S=\left\{x^{n}, n \in \mathbb{N}\right\}$ and consider

$$
\mathcal{F}=\{I \subset A, I \text { ideal }, I \cap S=\emptyset\}
$$

Because $x \notin N(A)$ it is $(0) \in \mathcal{F}$ and thus \mathcal{F} is a non empty family of ideals. There is then a maximal element (by Zorn's Lemma) of \mathcal{F} with respect to the inclusion order, \subseteq. Let P be the maximal element. By definition $x \notin P$. We are left to show that P is a prime ideal, i.e. that for all $a, b \in A$ such that $a \notin P$ and $b \notin P$ it is $a b \notin P$. Because $a \notin P$ and $b \notin P$ and because P is maximal in \mathcal{F} the ideals $P+(a)$ and $P+(b)$ have to intersect S :

$$
P+(a) \cap S \neq \emptyset, P+(b) \cap S \neq \emptyset .
$$

It follows that there are $n, m \in \mathbb{N}, p_{1}, p_{2} \in P, h_{1}, h_{2} \in A$ such that $x^{n}=p_{1}+a h_{1}, x^{m}=$ $p_{2}+b h_{2}$. This implies that:

$$
x^{n+m}=p_{1} p_{2}+p_{1} b h_{2}+p_{2} a h_{1}+a b h_{1} h_{2}
$$

and thus $x^{n+m} \in P+(a b)$. Because P does not intersect S it follows that $a b \notin P$.

