
SF2729 Groups and Rings
Suggested solutions to the final exam

Friday, May 27, 2011

PART I - GROUPS

(1) (a) The axioms of a group only state the existence of an identity elemente such that
a ∗ e = e ∗ a = a for all a in the group. Show that this element is unique. (2)

(b) The dihedral groupD2n can be defined as the symmetries of a regularn-gon. Show
that the center ofD2n is trivial if and only if n is odd. (2)

(c) Determine the highest order of an element in the symmetric groupS10. (2)

SOLUTION

a). Suppose thate′ was another identity element. This means that we have that

e′ = e ∗ e′ = e

where the first equality comes frome′ being an identity element and the second frome
being an identity element.

b). The dihedral group consists ofn reflections in then symmetry axes andn rotations,
ri, wherer is the basic rotation by2π/n. For any reflections, we have thatsr = r−1s,
which means that no reflection is in the center, unlessr = r−1 which happens only if
n = 2, whereD4 is abelian.

For any rotationri, and any reflections, we have thatsri = r−is. This means that
ri cannot be in the center unlessri = r−i. This happens exactly whenr2i = e. If n is
odd this is impossible, and the center is therefore trivial.If n is even, we have thatrn/2

commutes with all reflections and with all rotations. Hence the center is non-trivial ifn
is even.

c). The order of a permutation is the least common multiple of thelength of its cycles.
In order to get a large order, we need cycle with no common factors between the cycle
lenths. With one cycle, the order is10, with two cycles, the order is maximal for the
partition3 + 7, where we get order21. With three cycles, and no common factor, we get
the highest order for5 + 3 + 2, where we get order30. When there are more than three
cycles, we cannot avoid common factors, and the order will besmaller. Of course, we
can run through all the partitions42 partitions of10.



2 SF2729 - Final Exam 2011-05-27

(2) (a) The First Isomorphism Theorem says that there is an isomorphismG/ ker Φ ∼= im Φ
for any group homomorphismΦ : G −→ H. Prove this theorem. (2)

(b) Use the First Isomorphism Theorem to show thatZ2/K ∼= Z2 × Z, whereK ≤ Z2

is the subgroup generated by(4, 6). (Hint: Find a surjective group homomorphism
Z2 −→ Z2 × Z with kernelK.) (4)

SOLUTION

a). Let K = ker Φ and define a homorphism

Ψ : G/K −→ H

byΨ(aK) = Φ(a), for a ∈ G. This is well-defined since ifaK = bK, we haveab−1 ∈ K
andΦ(ab−1) = eH . HenceΦ(a) = Φ(b). It is a homomorphism sinceΨ(aK ∗ bK) =
Ψ(abK) = Φ(ab) = Ψ(aK)Ψ(bK), for all cosetsaK, bK ∈ G/H.

The homomorphismΨ is injective since the kernel ofΨ is given by

ker Ψ = {aK ∈ G/K|aK = K} = {K}.
ThusΨ gives an isomorphism ofG/K onto the imageim Ψ = im Φ.

b). In order to define a homomorphismΦ : Z2 −→ Z2 × Z, it is sufficient to define
Φ(1, 0) = (a, b) andΦ(0, 1) = (c, d), sinceZ2 is a free abelian group. The kernel is
given by the elements(x, y) ∈ Z2 such thatax + cy = 0 in Z2 andbx + dy = 0 in Z.
We need thatker Φ = H. In order for(4, 6) to be in the kernel, we need that4b + 6d = 0
in Z, which is true ifb = 3 andd = −2. The solutions to the equation3x − 2y = 0 is
given by the multiples of(x, y) = t(2, 3). In order for the kernel to be generated by(4, 6)
rather than by(2, 3), we need that the first equation excludes(2, 3) as a solution. This
means that2a+3c 6= 0 in Z2, i.e. thatc = 1. The homomorphismΦ(x, y) = (ȳ, 3x−2y)
has kernel generated by(4, 6) and therefore, by the isomorphism theorem, we have that
Z2/K ∼= Z2 × Z.
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(3) When a group acts on itself by conjugation, the orbits arecalledconjugacy classes.
(a) Show that in a finite group, the size of the conjugacy classcontaining an elementa is

related to the number of elements commuting witha, i.e., the size of the centralizer,
CG(a). (2)

(b) Use the relation to compute the size of the conjugacy class containing the matrix

A =

(

1 1
0 1

)

in the general linear groupGl2(F3) of invertible2 × 2-matrices over the field with
three elements. (Hint: the number of elements inGl2(F3) is 48.) (4)

SOLUTION

a). For any group action of a finite groupG on a setX we have that

|G| = |Gx| · |Gx|
for any elementx ∈ X. In the case whereG acts on itself by conjugation, we have that
the stabilizer,Ga, consists of the elementsb ∈ G such thatb.a = a, i.e., bab−1 = a.
This is exactly the set of elements commuting witha, i.e., the centralizer,CG(a). Thus
we have that the size of the conjugacy class ofa is given by|G|/|CG(a)|.
b). We look at the condition to commute withA. For a given matrix

B =

(

a b
c d

)

to commute withA, we have the conditionAB − BA = 0. We have that

AB − BA =

(

1 1
0 1

) (

a b
c d

)

−
(

a b
c d

) (

1 1
0 1

)

=

(

a + c b + d
c d

)

−
(

a a + b
c c + d

)

=

(

c d − a
0 c

) .

This meansAB −BA = 0 if and only if a = d andc = 0. Thus the matrices commuting
with A are exactly the matrices of the form

B =

(

a b
0 a

)

.

Now we look for the elements inCG(A), which means that we only count the invertible
matrices commuting withA. The only condition forB to be invertible is thata 6= 0. Thus
|CG(A)| = 2 · 3 = 6. The conclusion is therefore that the conjugacy class ofA contains
|G|/|CG(A)| = 48/6 = 8 elements.
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PART II - R INGS

(1) (a) Prove that a2 × 2-matrix over a field is invertible if and only if the first column is a
nonzero vector and the second column is not a multiple of the first column. (2)

(b) Let Fq be a finite field withq elements. Prove that the groupGl2(Fq) of invertible
2 × 2-matrices overFq has(q2 − 1)(q2 − q) elements. (2)

(c) Determine the number of zero-divisors in the ringM2(Fq) of 2×2-matrices overFq.
(2)

SOLUTION

a). A 2 × 2-matrix

(

a b
c d

)

over a fieldF is invertible if and only if its determinant

ad − bc is invertible inF , i.e., nonzero. (The usual formula for the inverse of a2 × 2-
matrix holds.) It is clear that the determinant is zero if thefirst column is zero or if the
second column is a multiple of the first column. Ifa 6= 0, thenb = λa for someλ ∈ F .
Thenad − bc = a(d − λc), so the determinant is nonzero if the second column is not a
multiple of the first column. Similarly whenc 6= 0.

b). There areq2 − 1 nonzero vectors inF 2 and each of them hasq distinct multiples. So
there areq2−1 choices for the first column and for each of those choices, there areq2−q
possibilities for the second column.

c). A zero-divisor is certainly not invertible, so a2× 2-matrix that is a zero-divisor must
have determinant zero. Conversely,

(

a b
c d

) (

d −b
−c a

)

=

(

ad − bc 0
0 ad − bc

)

,

so a nonzero matrix with zero determinant is a zero-divisor.There areq4 − q3 − q2 + q
matrices with nonzero determinant among theq4 elements ofM2(Fq), so there areq3 +
q2 − q − 1 zero-divisors.
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(2) (a) Prove thatx3 − x + 1 is irreducible inZ3[x]. (2)
(b) LetF be the fieldZ3[x]/(x3 − x + 1). Write γ for the elementx + (x3 − x + 1), so

F = Z3(γ). Determine the order ofγ2 in the multiplicative groupF ∗. (2)
(c) LetR be the ringZ[

√
−3]. Is the ideal(2, 1 +

√
−3) a principal ideal inR? (2)

SOLUTION

a). A polynomial of degree2 or 3 over a field is irreducible if and only if it has no zeroes.
Every element ofZ3 is a zero ofx3 − x, sox3 − x + 1 has no zeroes.

b). F is indeed a field. As a vector space overZ3 it has dimensionn = 3, so it has
3n = 33 = 27 elements. The multiplicative groupF ∗ has26 elements. The possible
orders of elements ofF ∗ are therefore1, 2, 13 and26; in fact, all orders occur, since
F ∗ is well-known to be cyclic. The elements ofF can uniquely be written in the form
a + bγ + cγ2, with a, b, andc arbitrary elements ofZ3, so the order ofγ2 is not1. Since
γ3 = γ − 1, we find thatγ4 = γ2 − γ, so the order ofγ2 is not2 either. Finally, since
γ26 = 1, the order ofγ2 is at most13 (in fact, it divides13). So the order ofγ2 equals13.

c). The ringZ[
√
−3] has a multiplicative norm given by

N(a + b
√
−3) = (a + b

√
−3)(a − b

√
−3) = a2 + 3b2.

We see directly that the only units are±1. The elements2 and1 +
√
−3 both have norm

4. If the ideal they generate is principal, then the norm of a generator must divide4. The
generator cannot have norm4, since2 and1 +

√
−3 don’t differ by a unit. There is no

element with norm2, so the only possibility left is a generator with norm1, in which
case the ideal would equalR. However, one easily checks that every elementa + b

√
−3

of the ideal(2, 1 +
√
−3) has the property thata + b is even, so1 is not in the ideal. The

conclusion is that the ideal is not principal.
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(3) (a) Prove thatf(x) = x4 + 4x2 + 2 is irreducible inQ[x]. (2)
(b) LetK be the fieldQ[x]/(f(x)). Write α for the elementx + (f(x)), soK = Q(α).

Putβ = α2. Determine[Q(β) : Q] and show thatf(x) factors as a product of two
polynomials of positive degree inQ(β)[x]. (2)

(c) Prove thatα3 + 3α is a zero off(x) and conclude thatf(x) factors as a product of
linear factors inQ(α)[x]. (2)

SOLUTION

a). This follows immediately from the Eisenstein criterion forp = 2.

b). The elementβ = α2 is a zero of the polynomialg(x) = x2 + 4x + 2, which also
is irreducible inQ[x] (for the same reason). So[Q(β) : Q] = 2. Clearly,g(x) = (x −
β)(x + 4 + β) in Q(β)[x]. Sof(x) = g(x2) = (x2 − β)(x2 + 4 + β) in Q(β)[x], which
gives a factorisation as desired.

c). Clearly,α and−α are the zeroes of the factor(x2 − β) in Q(α). So we should check
thatα3 +3α is a zero ofx2 +4+β. A computation using thatα4 = −4α2 − 2 and hence
α6 = −4α4 − 2α2 shows that this is indeed the case:

(α3 + 3α)2 + 4 + α2 = α6 + 6α4 + 10α2 + 4 = 2α4 + 8α2 + 4 = 0.

Clearly,−α3 − 3α is then a zero off(x) as well. Having found four distinct zeroes of
f(x) in Q(α), we conclude thatf(x) factors as a product of linear factors inQ(α)[x].
(We have shown thatQ(α) is a splitting field forf(x) overQ.)


