

SF2729 Groups and Rings
 Suggested solutions to the final exam
 Wednesday, August 17, 2011

Part I - Groups

(1) (a) A latin square of size $n \times n$ is an $n \times n$-array of symbols where each symbol occurs exactly once in each row and in each column. Show that the multiplication table of a finite group has to be a latin square.
(b) Let G be the set of invertible 2×2-matrices with coefficients in \mathbb{Z}_{6}. Show that G is a group under matrix multiplication.
(c) Lagrange's theorem states that the order of a subgroup H of a finite group G divides the order of G. Prove this theorem.

Solution

a). Because every element is invertible, we can solve any equation $a * x=b$ uniquely by multiplication by a^{-1} to the left. We get $a^{-1} *(a * x)=a^{-1} * b$, which by the associativity is equivalent to $\left(a^{-1} * a\right) * x=a^{-1} * b$. Since $a^{-1} * a=e$, and $e * x=x$, we get $x=a^{-1} * b$. This means that the symbol b occurs exactly once in the row given by a. In the same way, we apply multiplication on the right to $x * a=b$ to conclude that every symbol b occurs exactly once in the column corresponding to a.
b). Matrix multiplication is associative over any ring. The identity matrix, I_{2}, is a unit and all invertible matrices have a two-sided inverse. The only thing that remains to check is that the product of two invertible matrices, A and B, is invertible. This is true since

$$
\left(B^{-1} A^{-1}\right)(A B)=B^{-1} I_{2} B=B^{-1} B=I_{2}
$$

and similarly $(A B)\left(B^{-1} A^{-1}\right)=I_{2}$.
c). We first show that the left cosets of H form a partition of G. This can be done by introducing the equivalence relation

$$
a \sim_{L} b \Leftrightarrow a^{-1} b \in H
$$

We check that this is indeed an equivalence relation.
i) (reflexivity) $a^{-1} a=e \in H$, for all $a \in G$.
ii) (symmetry) $\left(a^{-1} b\right)^{-1}=b^{-1} a$ and hence $a^{-1} b \in H \Leftrightarrow b^{-1} a \in H$ since H is a subgroup.
iii) (transitivity) If $a^{-1} b \in H$ and $b^{-1} c \in H$, we get $a^{-1} c=\left(a^{-1} b\right)\left(b^{-1} c\right) \in H$.

Now, we check that $a \sim_{L} b$ if and only if they are in the same coset. In fact, $a^{-1} b \in$ $H \Leftrightarrow b \in a H$.

Since the equivalence classes give a partition of the set, we get that the left cosets give a partition of the set G into disjoint subsets. (Of course this also holds for the right cosets.)

Once we know that the cosets, which all have size $|H|$, form a partition of G, we get that $|G|$ has to be a multiple of $|H|$.
(2) Let G be the group of invertible 2×2-matrices with entries in \mathbb{Z}_{6} from problem 1 (b) and let G act on $\mathbb{Z}_{6} \times \mathbb{Z}_{6}$ seen as column vectors by matrix multiplication. Let $x=(1,0) \in$ $\mathbb{Z}_{6} \times \mathbb{Z}_{6}$.
(a) Determine the stabilizer G_{x}. ${ }^{1}$
(b) Determine the orbit $G x$.
(c) Use the results of part (a) and (b) to determine the order of G.

Solution

a). The matrices that stabilize x satisfy

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

where the arithmetics is done in \mathbb{Z}_{6}. This means that $a=1, c=0$, while b and d are arbitrary. Now we are only interested in the matrices in G, so they have to be invertible. This means that d has to be invertible and b can still be arbitrary. In \mathbb{Z}_{6} only ± 1 are invertible. Thus we have the twelve elements

$$
\left[\begin{array}{cc}
1 & b \\
0 & \pm 1
\end{array}\right]
$$

b). The orbit is given by all elements that can be written as

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
a \\
c
\end{array}\right]
$$

where the 2×2-matrix is invertible. By the usual formula from linear algebra, we know that if a matrix is invertible, its inverse can be written as

$$
\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

Thus the matrix is invertible if and only if the determinant is invertible. In this setting, this means that the determinant is ± 1. We look for the possible a and c such that we can find b and d with $a d-b c= \pm 1$. This is impossible if a and c have a common factor which is not invertible. There are $3 \cdot 3=9$ cases where 2 is a common factor and $2 \cdot 2=4$ cases where 3 is a common factor. One of these is common, $(0,0)$.

When neither 2 nor 3 is a common factor, the equation $a x-c y=1$ can be solved over \mathbb{Z}_{6}. Thus the orbit consists of all $36-12=24$ pairs (a, c), where a and c don't have 2 or 3 as a common factor.
c). We have in general that for a finite group $|G|=|G x| \cdot\left|G_{x}\right|$. In our case we have computed the order of the stabilizer to be twelve and the size of the orbit to be twentyfour. Thus we get

$$
|G|=|G x| \cdot\left|G_{x}\right|=12 \cdot 24=288
$$

[^0](3) Let $\Phi: G \longrightarrow H$ be a surjective group homomorphism and $K \leq H$ a normal subgroup.
(a) Show that the inverse image $\Phi^{-1}(K)$ is a normal subgroup of G.
(b) Show that $G / \Phi^{-1}(K)$ is isomorphic to H / K.
(c) Assume that K equals the commutator subgroup $[H, H]$. Show that $\Phi^{-1}(K)$ contains $[G, G]$. Does equality hold?

Solution

a). If a is in $\Phi^{-1}(K)$ and b is any element of G we get that

$$
\Phi\left(b a b^{-1}\right)=\Phi(b) \Phi(a) \Phi(b)^{-1}
$$

which is in K since $\Phi(a) \in K$ and K is normal in H. Thus $b a b^{-1}$ is in $\Phi^{-1}(K)$ which shows that $\Phi^{-1}(K)$ is normal in G.
b). We have the natural homomorphism $\Psi: H \longrightarrow H / K$ and when we compose it with Φ, we get $\Psi \circ \Phi: G \longrightarrow H / K$. This is surjective since both Φ and Ψ are surjective. Thus we have by the first isomorphism theorem that H / K is isomorphic to $G / \operatorname{ker}(\Psi \circ \Phi)$. It remains to show that $\operatorname{ker}(\Psi \circ \Phi)=\Phi^{-1}(K)$. Indeed, we have that
$\operatorname{ker}(\Psi \circ \Phi)=\{a \in G \mid \Psi(\Phi(a))=e K \in H / K\}=\{a \in G \mid \Phi(a) \in K\}=\Phi^{-1}(K)$.
c). The commutator subgroup is generated by all the commutators, $a b a^{-1} b^{-1}$, where $a, b \in H$. It is sufficient to show that the image of any commutator in G is in K. This is true since

$$
\Phi\left(a b a^{-1} b^{-1}\right)=\Phi(a) \Phi(b) \Phi(a)^{-1} \Phi(b)^{-1}
$$

which is a commutator in H. Thus any commutator lies in $\Phi^{-1}([H, H])=\Phi^{-1}(K)$.
Another way is to use part (b) and see that H / K is abelian and since $G / \Phi^{-1}(K)$ is abelian, $\Phi^{-1}(K)$ has to contain the commutator subgroup, $[G, G]$.

Equality can of course hold, for example when Φ is an isomorphism. However, it is not an equality in general. If G and H are abelian, their commutator subgroups are trivial, but a surjective homomorphism $\Phi: G \longrightarrow H$ does not have to be injective.

Part II - Rings

(1) (a) Let F be a finite field. Assume that -1 is not a square in F. Prove that 2 or -2 is a square in F.
(b) Prove that $X^{4}+1$ is irreducible in $\mathbb{Z}[X]$.
(c) Let p be a prime number and let \mathbb{F}_{p} be a finite field with p elements. Prove that $X^{4}+1$ is reducible in $\mathbb{F}_{p}[X]$. (Hint: use part (a) when -1 is not a square in \mathbb{F}_{p}.) (2)

Solution

a). If $\operatorname{char}(F)=2$, then $-1=1$ is a square in F. So $\operatorname{char}(F)=p$, an odd prime, and F has an odd number of elements (p^{n} for some $n \geq 1$). So $F^{*}=F \backslash\{0\}$ has an even number of elements. We know that F^{*} is cyclic (any finite subgroup of the invertible elements of a domain is cyclic). If x generates F^{*}, then the squares in F^{*} form the subgroup generated by x^{2}. It is of index 2 in F^{*} and the unique nontrivial coset consists of the nonzero nonsquares. So the product of two nonzero nonsquares is a nonzero square. So if 2 is a nonsquare, then -2 is a square, since -1 is a nonsquare.
b). $X^{4}+1$ clearly has no roots in \mathbb{Z} (or \mathbb{R}). The only possible factorization is as a product of two polynomials of degree 2 . One way to argue is by looking at the complex roots $\pm \frac{1}{2} \sqrt{2} \pm \frac{1}{2} i \sqrt{2}\left(=e^{2 \pi i k / 8}, k\right.$ odd $)$. We get that the factors in $\mathbb{R}[X]$ are $X^{2} \mp \sqrt{2} X+1$, which aren't in $\mathbb{Z}[X]$.

Another way: if $X^{2}+a X+b$ is one factor in $\mathbb{Z}[X]$, one sees that the other factor must be $X^{2}-a X+b$ (by looking at the coefficients of X^{3} and X). Then $b^{2}=1$, so $b= \pm 1$, and $a^{2}=2 b= \pm 2$, which doesn't have solutions in \mathbb{Z}.

Finally, a separate argument: $(X+1)^{4}+1=X^{4}+4 X^{3}+6 X^{2}+4 X+2$ is irreducible by the Eisenstein criterion for $p=2$, so $X^{4}+1$ is irreducible as well.
c). If -1 is a square f^{2} in \mathbb{F}_{p}, then $X^{4}+1=X^{4}-(-1)=\left(X^{2}\right)^{2}-f^{2}=\left(X^{2}+f\right)\left(X^{2}-f\right)$ in $\mathbb{F}_{p}[X]$. If -1 is not a square, then $X^{4}+1$ certainly has no roots in \mathbb{F}_{p}. But 2 or -2 is a square in \mathbb{F}_{p}. Following the second argument in (b), we find $a \in \mathbb{F}_{p}$ with $a^{2}=2$ or $a^{2}=-2$. Taking $b=+1$ resp. -1 , we find a factorization in $\mathbb{F}_{p}[X]$. (Alternatively, $X^{4}+1=X^{4} \pm 2 X^{2}+1-\left(\pm 2 X^{2}\right)=\left(X^{2} \pm 1\right)^{2}-\left(\pm 2 X^{2}\right)$ is a difference of two squares, hence factorable, if ± 2 is a square.)
(2) (a) Prove that $3+2 i$ is a prime element of $\mathbb{Z}[i]$.
(b) Prove that $F=\mathbb{Z}[i] / \mathbb{Z}[i](3+2 i)$ is a field. How many elements does F have?
(c) Find a generator of the multiplicative group of F.

Solution

a). Recall that $\mathbb{Z}[i]$ has a Euclidean norm N with $N(a+b i)=a^{2}+b^{2}$, which is multiplicative. The elements with norm 1 are the units $\pm 1, \pm i$. The ring $\mathbb{Z}[i]$ is a UFD (even a PID). The norm of $3+2 i$ equals 13 , which is a prime number. It follows directly that $3+2 i$ is irreducible, hence prime (since the ring is a UFD).
b). Nonzero prime ideals in a PID are in fact maximal, so $\mathbb{Z}[i] / \mathbb{Z}[i](3+2 i)$ is a field F. In $F, 13=(3+2 i)(3-2 i)=0$, so $\operatorname{char}(F)=13$. It is clear that F has at most 26 elements ($a+b i$ with $0 \leq a \leq 12$ and $0 \leq b \leq 1$), so in fact F has 13 elements (the only possible power of 13). (We also find this using $7(3+2 i)=8+i=0$.)
c). The 13 elements of F can be thought of as a (modulo $(3+2 i)$), with $0 \leq a \leq 12$. We try the powers of 2 :

$$
2,4,8,16=3,2^{5}=6,2^{6}=12
$$

So the order of 2 is 12 and 2 generates F^{*}. Other generators are $2^{5}=6,2^{7}=11$, and $2^{11}=7$.
(3) (a) Prove that the ring $\mathbb{R}[X] /\left(X^{3}-X^{2}+2 X-2\right)$ is isomorphic to $\mathbb{R} \times \mathbb{C}$.
(b) Let p be a prime number. Let R be the subring of \mathbb{Q} consisting of the numbers a / b with $a, b \in \mathbb{Z}$ and b not divisible by p. Let I be a nonzero ideal of R. Prove that $I=\left(p^{n}\right)$ for some $n \geq 0$. Conclude that R has a unique maximal ideal.

Solution

a). In a commutative ring R with 1 , two ideals I and J are called relatively prime when $I+J=R$ (i.e., $1=i+j$ for some $i \in I$ and $j \in J$). One always has the inclusion $I J \subseteq I \cap J$; equality holds when I and J are relatively prime, since for $a \in I \cap J$

$$
a=a \cdot 1=a(i+j)=a i+a j \in I J .
$$

The natural ring homomorphism

$$
R /(I \cap J) \rightarrow R / I \times R / J, \quad a+(I \cap J) \mapsto(a+I, a+J)
$$

is injective. When I and J are relatively prime, it is surjective:

$$
a j+b i+(I \cap J) \mapsto(a+I, b+J)
$$

if $1=i+j$. So, for two relatively prime ideals I and J, we obtain isomorphisms

$$
R / I J \cong R /(I \cap J) \cong R / I \times R / J
$$

this is commonly referred to as the Chinese Remainder Theorem.
Now $X^{3}-X^{2}+2 X-2=(X-1)\left(X^{2}+2\right)$ and the two irreducible factors are relatively prime in $\mathbb{R}[X]$. By the above, we obtain an isomorphism

$$
\mathbb{R}[X] /\left(X^{3}-X^{2}+2 X-2\right) \cong \mathbb{R}[X] /(X-1) \times \mathbb{R}[X] /\left(X^{2}+2\right)
$$

But $\mathbb{R}[X] /(X-1) \cong \mathbb{R}$ via $X+(X-1) \mapsto 1$ and $\mathbb{R}[X] /\left(X^{2}+2\right) \cong \mathbb{C}$ via $X+\left(X^{2}+2\right) \mapsto$ $i \sqrt{2}$.
b). We note that R is indeed a subring; the sum and product of two rational numbers whose denominators are not divisible by p are rational numbers whose denominators are not divisible by p. The invertible elements are the rational numbers for which the numerator is not divisible by p either. Hence $(a / b)=\left(p^{n}\right)$ if (b is not divisible by p and) a is exactly n times divisible by p (i.e., $a=a^{\prime} p^{n}$ for an integer a^{\prime} not divisible by p). If I is a nonzero ideal, let m be the minimum of the nonnegative integers n thus obtained from the nonzero elements of I. (The minimum exists.) Then $I=\left(p^{m}\right)$. For $m=0$, the ideal $\left(p^{m}\right)$ equals R; but the ideal (p) is maximal, and it clearly is the unique maximal ideal.

[^0]: ${ }^{1}$ The stabilizer is also called the isotropy subgroup.

