
SF2729 Groups and Rings
Suggested solutions to the final exam

Wednesday, August 17, 2011

PART I - GROUPS

(1) (a) A latin square of size n×n is an n×n-array of symbols where each symbol occurs
exactly once in each row and in each column. Show that the multiplication table of
a finite group has to be a latin square. (2)

(b) Let G be the set of invertible 2× 2-matrices with coefficients in Z6. Show that G is
a group under matrix multiplication. (2)

(c) Lagrange’s theorem states that the order of a subgroup H of a finite group G divides
the order of G. Prove this theorem. (2)

SOLUTION

a). Because every element is invertible, we can solve any equation a∗x = b uniquely by
multiplication by a−1 to the left. We get a−1∗(a∗x) = a−1∗b, which by the associativity
is equivalent to (a−1∗a)∗x = a−1∗b. Since a−1∗a = e, and e∗x = x, we get x = a−1∗b.
This means that the symbol b occurs exactly once in the row given by a. In the same way,
we apply multiplication on the right to x ∗ a = b to conclude that every symbol b occurs
exactly once in the column corresponding to a.

b). Matrix multiplication is associative over any ring. The identity matrix, I2, is a unit
and all invertible matrices have a two-sided inverse. The only thing that remains to check
is that the product of two invertible matrices, A and B, is invertible. This is true since

(B−1A−1)(AB) = B−1I2B = B−1B = I2

and similarly (AB)(B−1A−1) = I2.

c). We first show that the left cosets of H form a partition of G. This can be done by
introducing the equivalence relation

a ∼L b ⇔ a−1b ∈ H

We check that this is indeed an equivalence relation.
i) (reflexivity) a−1a = e ∈ H , for all a ∈ G.

ii) (symmetry) (a−1b)−1 = b−1a and hence a−1b ∈ H ⇔ b−1a ∈ H since H is a
subgroup.
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iii) (transitivity) If a−1b ∈ H and b−1c ∈ H , we get a−1c = (a−1b)(b−1c) ∈ H .
Now, we check that a ∼L b if and only if they are in the same coset. In fact, a−1b ∈

H ⇔ b ∈ aH .
Since the equivalence classes give a partition of the set, we get that the left cosets

give a partition of the set G into disjoint subsets. (Of course this also holds for the right
cosets.)

Once we know that the cosets, which all have size |H|, form a partition of G, we get
that |G| has to be a multiple of |H|.
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(2) Let G be the group of invertible 2× 2-matrices with entries in Z6 from problem 1(b) and
let G act on Z6 × Z6 seen as column vectors by matrix multiplication. Let x = (1, 0) ∈
Z6 × Z6.
(a) Determine the stabilizer Gx. 1 (2)
(b) Determine the orbit Gx. (2)
(c) Use the results of part (a) and (b) to determine the order of G. (2)

SOLUTION

a). The matrices that stabilize x satisfy[
a b
c d

] [
1
0

]
=

[
1
0

]

where the arithmetics is done in Z6. This means that a = 1, c = 0, while b and d are
arbitrary. Now we are only interested in the matrices in G, so they have to be invertible.
This means that d has to be invertible and b can still be arbitrary. In Z6 only ±1 are
invertible. Thus we have the twelve elements[

1 b
0 ±1

]

b). The orbit is given by all elements that can be written as[
a b
c d

] [
1
0

]
=

[
a
c

]

where the 2× 2-matrix is invertible. By the usual formula from linear algebra, we know
that if a matrix is invertible, its inverse can be written as

1

ad− bc

[
d −b
−c a

]

Thus the matrix is invertible if and only if the determinant is invertible. In this setting,
this means that the determinant is ±1. We look for the possible a and c such that we can
find b and d with ad − bc = ±1. This is impossible if a and c have a common factor
which is not invertible. There are 3 ·3 = 9 cases where 2 is a common factor and 2 ·2 = 4
cases where 3 is a common factor. One of these is common, (0, 0).

When neither 2 nor 3 is a common factor, the equation ax− cy = 1 can be solved over
Z6. Thus the orbit consists of all 36− 12 = 24 pairs (a, c), where a and c don’t have 2 or
3 as a common factor.

c). We have in general that for a finite group |G| = |Gx| · |Gx|. In our case we have
computed the order of the stabilizer to be twelve and the size of the orbit to be twenty-
four. Thus we get

|G| = |Gx| · |Gx| = 12 · 24 = 288.

1The stabilizer is also called the isotropy subgroup.
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(3) Let Φ: G −→ H be a surjective group homomorphism and K ≤ H a normal subgroup.
(a) Show that the inverse image Φ−1(K) is a normal subgroup of G. (2)
(b) Show that G/Φ−1(K) is isomorphic to H/K. (2)
(c) Assume that K equals the commutator subgroup [H,H]. Show that Φ−1(K) con-

tains [G,G]. Does equality hold? (2)

SOLUTION

a). If a is in Φ−1(K) and b is any element of G we get that

Φ(bab−1) = Φ(b)Φ(a)Φ(b)−1

which is in K since Φ(a) ∈ K and K is normal in H . Thus bab−1 is in Φ−1(K) which
shows that Φ−1(K) is normal in G.

b). We have the natural homomorphism Ψ : H −→ H/K and when we compose it with
Φ, we get Ψ◦Φ : G −→ H/K. This is surjective since both Φ and Ψ are surjective. Thus
we have by the first isomorphism theorem that H/K is isomorphic to G/ ker(Ψ ◦ Φ). It
remains to show that ker(Ψ ◦ Φ) = Φ−1(K). Indeed, we have that

ker(Ψ ◦ Φ) = {a ∈ G|Ψ(Φ(a)) = eK ∈ H/K} = {a ∈ G|Φ(a) ∈ K} = Φ−1(K).

c). The commutator subgroup is generated by all the commutators, aba−1b−1, where
a, b ∈ H . It is sufficient to show that the image of any commutator in G is in K. This is
true since

Φ(aba−1b−1) = Φ(a)Φ(b)Φ(a)−1Φ(b)−1

which is a commutator in H . Thus any commutator lies in Φ−1([H, H]) = Φ−1(K).
Another way is to use part (b) and see that H/K is abelian and since G/Φ−1(K) is

abelian, Φ−1(K) has to contain the commutator subgroup, [G,G].
Equality can of course hold, for example when Φ is an isomorphism. However, it is not

an equality in general. If G and H are abelian, their commutator subgroups are trivial,
but a surjective homomorphism Φ : G −→ H does not have to be injective.
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PART II - RINGS

(1) (a) Let F be a finite field. Assume that −1 is not a square in F . Prove that 2 or −2 is a
square in F . (2)

(b) Prove that X4 + 1 is irreducible in Z[X]. (2)
(c) Let p be a prime number and let Fp be a finite field with p elements. Prove that

X4 + 1 is reducible in Fp[X]. (Hint: use part (a) when −1 is not a square in Fp.) (2)

SOLUTION

a). If char(F ) = 2, then −1 = 1 is a square in F . So char(F ) = p, an odd prime, and F
has an odd number of elements (pn for some n ≥ 1). So F ∗ = F \{0} has an even number
of elements. We know that F ∗ is cyclic (any finite subgroup of the invertible elements
of a domain is cyclic). If x generates F ∗, then the squares in F ∗ form the subgroup
generated by x2. It is of index 2 in F ∗ and the unique nontrivial coset consists of the
nonzero nonsquares. So the product of two nonzero nonsquares is a nonzero square. So
if 2 is a nonsquare, then −2 is a square, since −1 is a nonsquare.

b). X4 + 1 clearly has no roots in Z (or R). The only possible factorization is as a
product of two polynomials of degree 2. One way to argue is by looking at the complex
roots±1

2

√
2± 1

2
i
√

2 (= e2πik/8, k odd). We get that the factors inR[X] are X2∓√2X+1,
which aren’t in Z[X].

Another way: if X2 +aX + b is one factor in Z[X], one sees that the other factor must
be X2 − aX + b (by looking at the coefficients of X3 and X). Then b2 = 1, so b = ±1,
and a2 = 2b = ±2, which doesn’t have solutions in Z.

Finally, a separate argument: (X +1)4 +1 = X4 +4X3 +6X2 +4X +2 is irreducible
by the Eisenstein criterion for p = 2, so X4 + 1 is irreducible as well.

c). If−1 is a square f 2 in Fp, then X4+1 = X4−(−1) = (X2)2−f 2 = (X2+f)(X2−f)
in Fp[X]. If −1 is not a square, then X4 + 1 certainly has no roots in Fp. But 2 or −2
is a square in Fp. Following the second argument in (b), we find a ∈ Fp with a2 = 2
or a2 = −2. Taking b = +1 resp. −1, we find a factorization in Fp[X]. (Alternatively,
X4 + 1 = X4 ± 2X2 + 1 − (±2X2) = (X2 ± 1)2 − (±2X2) is a difference of two
squares, hence factorable, if ±2 is a square.)
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(2) (a) Prove that 3 + 2i is a prime element of Z[i]. (2)
(b) Prove that F = Z[i]/Z[i](3 + 2i) is a field. How many elements does F have? (2)
(c) Find a generator of the multiplicative group of F . (2)

SOLUTION

a). Recall that Z[i] has a Euclidean norm N with N(a + bi) = a2 + b2, which is multi-
plicative. The elements with norm 1 are the units ±1, ±i. The ring Z[i] is a UFD (even
a PID). The norm of 3 + 2i equals 13, which is a prime number. It follows directly that
3 + 2i is irreducible, hence prime (since the ring is a UFD).

b). Nonzero prime ideals in a PID are in fact maximal, so Z[i]/Z[i](3 + 2i) is a field F .
In F , 13 = (3 + 2i)(3 − 2i) = 0, so char(F ) = 13. It is clear that F has at most 26
elements (a + bi with 0 ≤ a ≤ 12 and 0 ≤ b ≤ 1), so in fact F has 13 elements (the only
possible power of 13). (We also find this using 7(3 + 2i) = 8 + i = 0.)

c). The 13 elements of F can be thought of as a (modulo (3 + 2i)), with 0 ≤ a ≤ 12.
We try the powers of 2:

2, 4, 8, 16 = 3, 25 = 6, 26 = 12.

So the order of 2 is 12 and 2 generates F ∗. Other generators are 25 = 6, 27 = 11, and
211 = 7.
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(3) (a) Prove that the ring R[X]/(X3 −X2 + 2X − 2) is isomorphic to R× C. (2)
(b) Let p be a prime number. Let R be the subring of Q consisting of the numbers a/b

with a, b ∈ Z and b not divisible by p. Let I be a nonzero ideal of R. Prove that
I = (pn) for some n ≥ 0. Conclude that R has a unique maximal ideal. (4)

SOLUTION

a). In a commutative ring R with 1, two ideals I and J are called relatively prime when
I + J = R (i.e., 1 = i + j for some i ∈ I and j ∈ J). One always has the inclusion
IJ ⊆ I ∩ J ; equality holds when I and J are relatively prime, since for a ∈ I ∩ J

a = a · 1 = a(i + j) = ai + aj ∈ IJ.

The natural ring homomorphism

R/(I ∩ J) → R/I ×R/J, a + (I ∩ J) 7→ (a + I, a + J)

is injective. When I and J are relatively prime, it is surjective:

aj + bi + (I ∩ J) 7→ (a + I, b + J)

if 1 = i + j. So, for two relatively prime ideals I and J , we obtain isomorphisms

R/IJ ∼= R/(I ∩ J) ∼= R/I ×R/J ;

this is commonly referred to as the Chinese Remainder Theorem.
Now X3 − X2 + 2X − 2 = (X − 1)(X2 + 2) and the two irreducible factors are

relatively prime in R[X]. By the above, we obtain an isomorphism

R[X]/(X3 −X2 + 2X − 2) ∼= R[X]/(X − 1)× R[X]/(X2 + 2).

ButR[X]/(X−1) ∼= R via X+(X−1) 7→ 1 andR[X]/(X2+2) ∼= C via X+(X2+2) 7→
i
√

2.

b). We note that R is indeed a subring; the sum and product of two rational numbers
whose denominators are not divisible by p are rational numbers whose denominators
are not divisible by p. The invertible elements are the rational numbers for which the
numerator is not divisible by p either. Hence (a/b) = (pn) if (b is not divisible by p and)
a is exactly n times divisible by p (i.e., a = a′pn for an integer a′ not divisible by p). If
I is a nonzero ideal, let m be the minimum of the nonnegative integers n thus obtained
from the nonzero elements of I . (The minimum exists.) Then I = (pm). For m = 0, the
ideal (pm) equals R; but the ideal (p) is maximal, and it clearly is the unique maximal
ideal.


