
SF2729 GROUPS AND RINGS
Final Exam

Friday June 1, 2012

Time: 14:00–18:00
Allowed aids: none
Examiners: Wojciech Chachólski and Carel Faber

Present your solutions to the problems in such a way that the arguments and calculations are
easy to follow. Provide detailed arguments to your answers. An answer without explanation will
be given no points.

For Problem 1, the final score equals at least the number of points obtained from the home-
works of the groups part of the course. If your solution to Problem 1 is worth more points, then
this will be your final score.

For Problem 2, the final score equals at least the number of points obtained from the home-
works of the rings part of the course. If your solution to Problem 2 is worth more points, then
this will be your final score.

For each problem, the maximum score is 6 points.
The minimum requirements for the various grades are according to the following table:

Grade A B C D E
Total credit 30 27 24 21 18

Problem 1
(6 points). List all groups of order 6 up to isomorphism and prove that these are all such groups.

Solution
Let G be a group of order 6. Since the primes 2 and 3 divide the number 6, there are elements a
and b in G whose orders are respectively 2 and 3. The subgroup < b > has 3 elements (1, b, b2),
hence has index 2 and therefore is normal in G.

There are two possibilities. One is when a and b commute with each other. In this case the
group < a, b > is abelian and since < a > ∩ < b >= {1}, it has 6 elements. It follows that G is
abelian and therefore is isomorphic to Z/6.

Assume now that a and b do not commute. Note that the following elements in G are all
different: 1, b, b2, a, ab, ab2. Since < b >= {1, b, b2} is normal in G the conjugation with respect
to any element of G maps the set {1, b, b2} onto itself. This defines a function f : G → S{1,b,b2},
that maps an element g to the permutation of {1, b, b2} given by the conjugation g − g−1 with g.
This is a group homomorphism. We are going to check that its kernel consists only of 1. For that
we need to show that for any g 6= 1, f(g) is not the identity permutation of {1, b, b2}.

• f(a)(b) = aba can not be equal to b since aba = b implies commutativity ab = ba. It
follows that aba = b2.



• f(b)(a) = bab2 can not be equal to a since the equality bab2 = a implies abab2 = 1, which
by the previous argument would lead to a contradiction b = b4 = 1.

• f(ab)(a) = abab2a = b4a = ba = aaba = ab2 is not equal to a.

• f(ab2)(a) = ab2aba = ab4 = ab is not equal to a.

• f(b2)(a) = b2ab can not be equal to a since the equality b2ab = a implies b2aba = 1 which
leads to a contradiction b4 = b = 1.

We have constructed an isomorphism between G and S{1,b,b2}.
Conclusion: up to an isomorphism there are only 2 groups of order 6, the cyclic group Z/6

and the permutation group S3.

Problem 2
Let R be the ring

Z[
√
−2] = {a + b

√
−2 | a, b ∈ Z}.

It is given that R is a Euclidean domain with Euclidean multiplicative norm

N(a + b
√
−2) = (a + b

√
−2)(a− b

√
−2) = a2 + 2b2.

a. (2 points). Prove that 1 + 2
√
−2 is not an irreducible element of R.

b. (2 points). Determine a greatest common divisor in R of 2 +
√
−2 and 4 +

√
−2.

c. (2 points). Prove that R/〈3 +
√
−2〉 is a finite field with 11 elements.

Solution
a. The norm of 1 + 2

√
−2 equals 9. If 1 + 2

√
−2 = x · y with x and y non-units in R,

then x and y must have norm 3, since the norm is multiplicative. (Note that a unit must
have norm 1; conversely, the only elements with norm 1 are 1 and −1, which are units.)
The only elements with norm 3 are ±1 ±

√
−2. Now (1 +

√
−2)(1 −

√
−2) = 3, so

the only possible factorizations (up to units) of 1 + 2
√
−2 are ±(1±

√
−2)2. We see that

(1+
√
−2)2 = −1+2

√
−2, which doesn’t help us, but−(1−

√
−2)2 = −(−1−2

√
−2) =

1 + 2
√
−2, which proves that 1 + 2

√
−2 is not irreducible in R.

b. A fast way of solving this is to observe that the difference of 4+
√
−2 and 2+

√
−2 equals

2, that the difference of 2 +
√
−2 and 2 equals

√
−2, and that

√
−2 clearly divides both

4 +
√
−2 and 2 +

√
−2 (since it divides 2). Thus

√
−2 is a greatest common divisor in R

of 2 +
√
−2 and 4 +

√
−2.

More precisely, above we have applied the Euclidean algorithm to find a g.c.d. of 4+
√
−2

and 2 +
√
−2. The norm of 4 +

√
−2 is 18, that of 2 +

√
−2 is 6, and that of 2 is 4, so 2

is a remainder when 4 +
√
−2 is divided by 2 +

√
−2. Similarly,

√
−2, with norm 2, is a
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remainder when 2 +
√
−2 is divided by 2. Finally, dividing 2 by

√
−2, the remainder is 0,

so
√
−2 is a g.c.d. of 4 +

√
−2 and 2 +

√
−2.

c. A Euclidean domain is a PID, and nonzero ideals in a PID are maximal if and only if
they are generated by an irreducible element. The norm of 3 +

√
−2 equals 11, a prime

number. It directly follows that 3 +
√
−2 is irreducible (the norm is multiplicative). So

〈3 +
√
−2〉 is a maximal ideal and therefore R/〈3 +

√
−2〉 is a field F . Moreover, by the

definition of the norm, 〈3 +
√
−2〉 contains 11, so that 11 = 0 in F , which implies that F

has characteristic 11. Since
√
−2 = −3 in F , we see that F consists of the 11 elements a,

where 0 ≤ a ≤ 10.

Problem 3
a. (2 points). Let H be a subgroup of a group G. Show that if (G : H) = 2, then H is a

normal subgroup of G.

b. (1 point). Find an example of a group G and a subgroup H for which (G : H) = 3 and H
is a normal subgroup of G.

c. (3 points). Find an example of a group G and a subgroup H for which (G : H) = 4 and
H is NOT a normal subgroup of G.

Solution
a. Consider a left coset aH . If aH = H , then a is in H and hence aH = Ha. If aH 6= H ,

then a does not belong to H and consequently the right coset Ha is not equal to H . It
follows that {H, Ha} are the two different right cosets of H in G. Since the index of H in
G is 2, the group G is the disjoint union of H and aH . Similarly G is the disjoint union of
H and Ha. It follows that aH = Ha.

We can conclude that for any a, aH = Ha. This means that H is a normal subgroup in G.

b. For example take G = Z/6 and H =< 2 >.

c. For example take G = S{1,2,3,4} and H = S{1,2,3} = {σ ∈ S{1,2,3,4} | σ(4) = 4}. The
order of H is 6 and the order of G is 24. Thus the index of H in G is 4. The cycle (1, 2, 3)
belongs to H , however its conjugation (3, 4)(1, 2, 3)(3, 4) = (1, 2, 4) does not. It follows
that H is not normal in G.

Problem 4
a. (2 points). Show that x2 + x + 1 is the only irreducible polynomial of degree 2 in Z2[x].

b. (2 points). Show that a polynomial of degree 5 in Z2[x] which has no zeroes in Z2 and
which is not divisible by x2 + x + 1 is irreducible in Z2[x].
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c. (2 points). Show that x5 + x2 + 1 is irreducible in Z2[x] and determine a generator for the
multiplicative group of Z2[x]/〈x5 + x2 + 1〉.

Solution
a. There are only 4 polynomials of degree 2 in Z2[x]: x2, x2 + 1, x2 + x, and x2 + x + 1.

The polynomials with constant term 0 are divisible by x. Of course x2 + 1 = (x + 1)2 in
Z2[x]. On the other hand, x2 + x + 1 is a polynomial of degree 2 without zeroes in Z2, so
it is irreducible in Z2[x].

b. Consider a polynomial of degree 5 in Z2[x] which has no zeroes in Z2. The only factor-
ization it can have is as a polynomial of degree 2 times a polynomial of degree 3, both
irreducible. But by (a) above, x2 + x + 1 is the only irreducible polynomial of degree 2 in
Z2[x], and the given polynomial is not divisible by x2 + x + 1. Therefore, it is irreducible.

c. We apply (b) above. Note that x3+1 = x3−1 = (x−1)(x2+x+1) = (x+1)(x2+x+1),
so x5 + x2 + 1 = x2(x + 1)(x2 + x + 1) + 1, so x5 + x2 + 1 is not divisible by x2 + x + 1.
Clearly, it has no zeroes either, so it is irreducible in Z2[x]. We know that this means that
it generates a maximal ideal in Z2[x], so the quotient Z2[x]/〈x5 + x2 + 1〉 is a field, which
is easily seen to have 25 = 32 elements. Its multiplicative group has 31 elements, a prime
number. Hence any element not equal to the identity element 1 is a generator; perhaps it is
most natural to take x = x + 〈x5 + x2 + 1〉.

Problem 5
Let S12 be the permutation group of the set {1, 2, 3, . . . , 12}.

a. (1 point). Is there an element τ in S12 for which τ 2 is odd?

b. (2 points). Consider the following permutation in S12:

σ =

(
1 2 3 4 5 6 7 8 9 10 11 12
2 3 1 12 11 7 10 9 6 8 4 5

)
Find the cycle decomposition of σ and of σ2. Determine if σ is odd or even.

c. (3 points). Find the maximal order of a cyclic subgroup of S12.

Solution
a. Write τ as a product of transpositions τ = t1t2 · · · tk. It follows that τ 2 = t1 · · · tkt1 · · · tk

is a product of an even number of transpositions and hence it is even. We can conclude
that there is no τ for which τ 2 is odd.
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b. σ = (1, 2, 3)(4, 12, 5, 11)(6, 7, 10, 8, 9) and σ2 = (1, 3, 2)(4, 5)(12, 11)(6, 10, 9, 7, 8).

We can therefore write σ as the following product of an odd number of transpositions:

σ = (1, 3)(1, 2)(4, 11)(4, 5)(4, 12)(6, 9)(6, 8)(6, 10)(6, 7)

Thus the permutation σ is odd.

c. Let τ be a permutation in Sn. Express τ as a product c1c2 · · · ck of disjoint cycles. Let |ci|
denote the length of the cycle ci. This number is the order of the cyclic subgroup < ci >
in Sn. Since the cycles c1, c2, . . . , ck commute with each other, as they are disjoint, the
subgroup < c1, c2, . . . , ck > is isomorphic to Z/|c1| ×Z/|c2| × · · · ×Z/|ck|. The element
(1, 1, . . . , 1) in this abelian group has order equal to the least common multiple of the
numbers |c1|, |c2|,. . . , |ck|. We can conclude that this least common multiple is the order
of the permutation τ .

For example the element σ from part (b) has order equal to the least common multiple
of {3, 4, 5} which is 60. We claim that this is the maximal order of a cyclic subgroup
in S12. Let τ be an arbitrary permutation in S12. Write it as a disjoint product of cycles
τ = c1c2 · · · ck. We call the sequence of numbers [|c1|, |c2|, . . . , |ck|] the cycle type of τ .

• If one of the cycles has order 12 or 11, then the cycle type of τ can be either [12] or
[11], Thus τ has order 12 or 11.

• If one of the cycles has order 10, then the cycle type of τ can be either [10] or [10, 2].
Consequently τ has order 10.

• If one of the cycles has order 9, then the cycle type of τ can be either [9] or [9, 2] or
[9, 3]. Consequently the order of τ can be either 18 or 9.

• If one of the cycles has order 8, then the cycle type of τ can be either [8] or [8, 2], or
[8, 2, 2] or [8, 3], or [8, 4]. In this case the order of τ is either 8 or 24.

• If one of the cycles has order 7, then the cycle type of τ can be either [7], or [7, 2], or
[7, 3], or [7, 4] or [7, 5], or [7, 2, 2], or [7, 2, 3]. In this case the order of τ is either 7,
14, 21, 28, 35, or 42.

• If one of the cycles has order 6, then the cycle type of τ can be either [6], or [6, 2], or
[6, 3], or [6, 4], or [6, 5], or [6, 6], or [6, 2, 2], or [6, 2, 3], or [6, 2, 4], or [6, 3, 3]. In this
case the order of τ is either 6, 12, or 30.

• If one of the cycles has order 5, then the cycle type of τ can be either [5], or [5, 2], or
[5, 3], or [5, 4], or [5, 5], or [5, 6], or [5, 7], or [5, 2, 2], or [5, 2, 3], or [5, 2, 4], or [5, 2, 5],
or [5, 3, 3], or [5, 3, 4]. In this case the order of τ is either 5, 10, 15, 20, 30, 35, or 60.

• If all the cycles are of length not bigger than 4, then the order of τ can not be bigger
than 12.
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Problem 6
Let A be the set of complex numbers that are algebraic over Q.

a. (3 points). Prove that A is a subfield of C.

b. (3 points). Prove that A is algebraically closed.

Solution
a. Let α and β be in A. We need to show that α + β and αβ are in A and that 1/α is in A if

α 6= 0. We know that Q(α) and Q(β) are finite over Q, and clearly Q(α)(β) is finite over
Q(α). So Q(α, β) = Q(α)(β) is finite over Q, and every element of it belongs therefore
to A. But Q(α, β) is the smallest field extension of Q containing α and β, so it contains
α + β and αβ, and 1/α if α 6= 0.

b. Let f(x) ∈ A[x] be a nonconstant polynomial. We need to show that f(x) has a zero
in A. Certainly, f(x) has a zero α in C, since C is algebraically closed. Write f(x) =
anx

n + an−1x
n−1 + · · ·+ a1x+ a0 with n ≥ 1, an, . . . , a0 in A, and an 6= 0. Repeating the

arguments in (a), we see that Q(an, . . . , a0) is finite over Q, and Q(an, . . . , a0)(α) is finite
over Q(an, . . . , a0), so Q(an, . . . , a0, α) is finite over Q, so α ∈ A, and f(x) has a zero in
A. (Of course it follows that f(x) factors in A[x] into linear factors.)
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