
SF2729 GROUPS AND RINGS
Final Exam

Wednesday, August 15, 2012
Time: 14:00–18:00
Allowed aids: none
Examiners: Wojciech Chachólski and Carel Faber

Present your solutions to the problems in such a way that the arguments and calculations are
easy to follow. Provide detailed arguments to your answers. An answer without explanation will
be given no points.

For Problem 1, the final score equals at least the number of points obtained from the home-
works of the groups part of the course. If your solution to Problem 1 is worth more points, then
this will be your final score.

For Problem 2, the final score equals at least the number of points obtained from the home-
works of the rings part of the course. If your solution to Problem 2 is worth more points, then
this will be your final score.

For each problem, the maximum score is 6 points.
The minimum requirements for the various grades are according to the following table:

Grade A B C D E
Total credit 30 27 24 21 18

Problem 1
(6 points). Let G be a finite group whose order is odd (not divisible by 2). Let H be a subgroup
of G of index 3. Prove that H is a normal subgroup of G. (Suggestion: consider the action of G
on the set of cosets G/H and the induced homomorphism G→ S3).

Solution
Consider the action of G on the 3-element set of cosets G/H = {H, aH, bH}. This action
induces a homomorphism φ : G → S3. By definition, for g in G, φ(g) is a permutation of
G/H = {H, aH, bH} given by H 7→ gH , aH 7→ gaH , and bH 7→ gbH . In particular, if g
belongs to Ker(φ), thenH = gH and hence g ∈ H . It follows that Ker(φ) ⊂ H and consequently
φ is not the trivial homomorphism. Since G has odd order, the image of φ can not contain an
element of order 2. It follows that the image of φ has order 3. Consequently, the index of Ker(φ)
in G is 3 and therefore H = Ker(φ). This shows that H is a normal subgroup.

Problem 2
a. (4 points). Determine a factorization of g(X) = 4X3 + 2X2− 2X + 6 into a product of a

finite number of irreducibles in each of the following rings:

Z[X], Q[X], Z3[X], Z5[X], Z7[X].



b. (2 points). Determine the prime numbers p for which g(X) factors as a product of 3 linear
factors in Zp[X].

Solution
a. Note that g(X) = 2f(X), with f(X) = 2X3 + X2 − X + 3. The factor 2 is an irreducible
in Z[X], but it is a unit in each of the other rings. So let us study f(X). It is primitive in Z[X],
so it is irreducible in Q[X] if and only if it is irreducible in Z[X]. Since f(X) has degree 3, it is
reducible in Q[X] if and only if it has a zero in Q. We know that such a zero must be of the form
a
b
, with a and b relatively prime in Z and a|3 and b|2. This leaves the 8 possibilities ±1, ±3, ±1

2
,

and ±3
2
. We can of course simply try all 8 possibilities. Alternatively, we can note that the only

zero of f(X) in Z5[X] is 1 ∈ Z5, which leaves only 1 and −3
2

as possible zeroes in Q. We find
that −3

2
is the only zero of f(X) in Q. This gives a factor 2X + 3 in Z[X]; long division gives

the remaining factor X2 −X + 1, which is irreducible in Z[X] (since it has no zeroes in Z).
The only remaining question is whether X2 −X + 1 factors in Zp[X] for p = 3, 5, or 7. For

p = 3, we find the factorization (X + 1)2; for p = 5, it is irreducible; for p = 7, we find the
factorization (X + 2)(X + 4).

Answer: in Z[X], g(X) is the product of the irreducibles 2, 2X + 3, and X2 − X + 1; in
Q[X], g(X) is the product of the irreducibles 4X + 6 and X2 − X + 1; in Z3[X], g(X) is the
product of the irreduciblesX ,X+1, andX+1; in Z5[X], g(X) is the product of the irreducibles
4X + 6 and X2 −X + 1; in Z7[X], g(X) is the product of the irreducibles 4X + 6, X + 2, and
X + 4.

b. For p = 2, g(X) = 0 in Zp[X], but for other primes, by the above, the question is whether
X2 − X + 1 factors in Zp[X]. Note that (X + 1)(X2 − X + 1) = X3 + 1, so a zero α of
X2−X +1 in Zp satisfies α3 = −1, hence (−α)3 = 1. So −α is an element of order dividing 3
in the multiplicative group of Zp. For p = 3, −α = 1, but for p 6= 3, −α 6= 1, so −α has order 3.
If p ≡ 2 (mod 3), then Z∗

p, of order p− 1, doesn’t contain an element of order 3, so X2−X +1
is irreducible in Zp[X]. If p ≡ 1 (mod 3), then Z∗

p does contain an element of order 3, hence a
zero of X2 −X + 1, so X2 −X + 1 is reducible in Zp[X].

Answer: g(X) factors as a product of 3 linear factors exactly when p = 3 or p ≡ 1 (mod 3).

Problem 3
Let G be a group. An element g in G is called a simple commutator if there are elements a and
b in G such that g = aba−1b−1. The subgroup of G generated by all the simple commutators in
G is denoted by [G,G] and called the commutator subgroup of G.

a. (1 point). Is the conjugation of a simple commutator a simple commutator?

b. (1 point). Show that [G,G] is a normal subgroup in G.

c. (1 point). Prove that G/[G,G] is an abelian group.
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d. (1 point). Prove that any cycle of length 3 in the permutation group S5 is a simple com-
mutator.

e. (2 points). Prove that [A5, A5] = A5.

Solution
a. The conjugation of a simple commutator is also a simple commutator, since:

xaba−1b−1x−1 = xax−1xbx−1xa−1x−1xb−1x−1 = (xax−1)(xbx−1)(xax−1)−1(xbx−1)−1.

b. An element of [G,G] can be written as a product of simple commutators and inverses of
simple commutators. The conjugation of a simple commutator is a simple commutator. As the
conjugation is a group homomorphism, it takes a product of simple commutators and inverses of
simple commutators to a product of simple commutators and inverses of simple commutators. It
follows that [G,G] is a normal subgroup of G.

c. The group G/[G,G] is abelian, since:

a[G,G]b[G,G] = ab[G,G] = baa−1b−1ab[G,G] = ba[G,G] = b[G,G]a[G,G].

d. Let a, b, c be different elements of the set {1, 2, 3, 4, 5}. Note that (abc) = (ab)(bc)(ab)(bc).
Consequently, (abc) is a simple commutator.

e. Assume that a, b, c, d, e are different elements of the set {1, 2, 3, 4, 5}. The cycles (abc) and
(abd) in S5 are even and hence they belong to A5. Their simple commutator can be calculated as
follows:

(abc)(abd)(abc)−1(abd)−1 = (abc)(abd)(cba)(dba) = (ab)(cd).

Thus any element in A5 of the form (ab)(cd) belongs to [A5, A5]. Consequently, so does any
element of the form (ab)(cd)(cd)(be) = (ab)(be). Since any element in A5 is a product of
elements of the form (ab)(cd) and (ab)(be), we can conclude that A5 = [A5, A5].

Problem 4
a. (2 points). Determine an irreducible polynomial f(X) of degree 2 in Z3[X].

b. (2 points). Determine a generator of the multiplicative group of the finite field

Z3[X]/〈f(X)〉.

c. (2 points). Determine all elements of order 5 in the multiplicative group of the finite field
Z31.
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Solution
a. By counting the monic reducible polynomials of degree 2, one easily finds that there are
1
2
p(p−1) monic irreducible polynomials of degree 2 in Zp[X]. For p = 3, this gives 6 irreducible

polynomials; one easily finds that they are

±(X2 + 1), ±(X2 +X − 1), ±(X2 −X − 1),

since none of these has a zero in Z3. Let us take f(X) = X2 + 1 (which in some sense is the
simplest one).

b. Since f(X) is irreducible, 〈f(X)〉 is a maximal ideal in Z3[X], so the quotient is a field
F . This field has 9 elements, so its multiplicative group F ∗ has 8 elements. We know that F ∗

is cyclic and need to find a generator. Since F ∗ is cyclic of order 8, an element α ∈ F ∗ is a
generator if and only if α4 6= 1. We first try α = X = X+ 〈f(X)〉, but this fails, since α2 = −1,
so α4 = 1. The 4 elements of order dividing 4 in F ∗ are therefore 1, −1, X and −X . Any other
element ±X ± 1 will do.

c. Analogously, the multiplicative group of Z31 is a cyclic groupG of order 30. If g is a generator,
then g6 has order 5 and generates the subgroup of elements of order dividing 5; note that this
subgroup is a cyclic group of order 5. So we are looking for the nontrivial elements of this
subgroup; and any such element will generate it, since 5 is prime. Now we note that 25 = 32 = 1
in Z31, so 2 ∈ Z31 has order 5, and the other elements of order 5 are 22 = 4, 23 = 8, and 24 = 16.

Problem 5
Let S7 be the permutation group of the set {1, 2, 3, . . . , 7}.

a. (1 point). Is there a simple commutator in S7 (see Problem 3) which is an odd permutation?

b. (3 points). Find the number of different elements of order 7 in S7.

c. (2 points). Find the maximal order of a cyclic subgroup of S7.

Solution
a. A simple commutator is always an even permutation. Here is why. Consider a simple com-
mutator aba−1b−1. Assume that a can be written as a product of k transpositions and b can be
written as a product of l transpositions. The inverses a−1 and b−1 can then be written as products
of respectively k and l transpositions. Consequently the simple commutator aba−1b−1 can be
written as a product of 2k + 2l transpositions, which is an even number of transpositions.

b. Any element in S7 can be written as a product of disjoint cycles. The order of such an element
is then the least common multiple of the lengths of the cycles occurring in the product. Since 7
is a prime, it follows that the only permutations in S7 of order 7 are cycles of length 7. Any such
cycle can be uniquely written in the form (1abcdef) where a, b, c, d, e, f can be arbitrary distinct
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elements in the set {2, 3, 4, 5, 6, 7}. The number of such permutations is therefore given by the
product 6 · 5 · 4 · 3 · 2 = 720.

c. As before, any element in S7 can be written as a product of disjoint cycles. The order of such
an element is then the least common multiple of the lengths of the cycles occurring in the product.
Let τ be an arbitrary permutation in S7. Write it as a product of disjoint cycles τ = c1c2 · · · ck.
We call the sequence of numbers [|c1|, |c2|, . . . , |ck|] the cycle type of τ .

• If one of the cycles has order 7 or 6, then the cycle type of τ can be either [7] or [6]. Thus
τ has order 7 or 6.

• If one of the cycles has order 5, then the cycle type of τ can be either [5] or [5, 2]. Conse-
quently, the order of τ is either 5 or 10.

• If one of the cycles has order 4, then the cycle type of τ can be either [4] or [4, 2] or [4, 3].
Consequently, the order of τ can be either 4 or 12.

• If one of the cycles has order 3, then the cycle type of τ can be either [3] or [3, 2], or [3, 3],
or [3, 4], or [3, 2, 2]. In this case the order of τ is either 3 or 6 or 12.

• If one the cycles has order 2, then the cycle type of τ can be either [2], or [2, 2], or [2, 3], or
[2, 4], or [2, 5], or [2, 2, 2], or [2, 2, 3]. In this case the order of τ is either 2, or 4, or 6, or 10.

We can conclude that the maximal order of a cyclic subgroup of S7 is 12.

Problem 6
a. (2 points). Denote by K the field Q(

√
2, 3
√
2). Determine the degree of the field extension

K ⊃ Q.

b. (2 points). Determine an element α ∈ K such that K = Q(α).

c. (2 points). Prove that p = 13 is a prime number such that the reductions modulo p of
X2 − 2 and of X3 − 2 both are irreducible in Zp[X]. Is 13 the smallest such prime?

Solution
a. K contains the fields Q(

√
2) and Q( 3

√
2). The elements

√
2 and 3

√
2 have irreducible poly-

nomials X2 − 2 respectively X3 − 2 over Q, since these polynomials are irreducible by the
Eisenstein criterion. So the fields mentioned have degree 2 respectively 3 over Q. Since [K : Q]
is divisible by these degrees, it is divisible by 6. But [K : Q] is also at most 6, sinceK is obtained
from Q(

√
2) by an extension of degree at most 3. We find that [K : Q] = 6 (and hence X3 − 2

remains irreducible over Q(
√
2)).
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b. Such an element α will necessarily be of degree 6 over Q. A moment of inspiration will
seduce us to try α = 6

√
2, with irreducible polynomial X6 − 2 over Q (Eisenstein again). But

why would α be an element of K? Observe that (
√
2)6 = 23 and ( 3

√
2)6 = 22, so that

α =
6
√
2 =

√
2

3
√
2
,

which shows that α ∈ K.

c. We need to show that 2 is neither a square nor a cube in Z13. The nonzero squares modulo 13
are 1, 4, 9, 3, 12, and 10 (of course there are six of them). Similarly, in the multiplicative group
Z∗

13, cyclic of order 12, there are four cubes, forming a cyclic subgroup of order four. They are
1, −1, 8 and −8 = 5. This proves that both X2 − 2 and X3 − 2 are irreducible in Z13[X].

In fact, it is easy to see that 13 is the smallest prime p as in the problem (2 = 0 modulo 2,
2 = (−1)3 modulo 3, 2 = 33 modulo 5, 2 = 32 modulo 7, and all elements of Z∗

11 are cubes).
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