

SF2729 Groups and Rings Suggested solutions to midterm exam Monday, March 15, 2010

(1) a) Show directly from the group axioms that the unit of a group is unique and that there are the cancellation rules

$$
\begin{equation*}
a b=a c \Rightarrow b=c \quad \text { and } \quad a c=b c \Rightarrow a=b . \tag{2}
\end{equation*}
$$

b) Show that the symmetry group of the regular tetrahedron is isomorphic to A_{4}.
c) Show that the alternating group A_{n} for $n \geq 3$ is generated by the 3 -cycles

$$
(123),(234), \ldots,(n-2 n-1 n) .
$$

Solution

a). Let e and e^{\prime} be units in a group G. Then we have that $e e^{\prime}=e^{\prime}$ since e is a (left) unit, but also $e e^{\prime}=e$ since e^{\prime} is a (right) unit. Hence $e=e^{\prime}$ and the unit is unique.

Since there is an inverse to a, we have that

$$
a b=a c \Rightarrow a^{-1}(a b)=a^{-1}(a c) \Rightarrow\left(a^{-1} a\right) b=\left(a^{-1} a\right) b \Rightarrow e b=e c \Rightarrow b=c
$$

where we used associativity, that $a^{-1} a=e$ and that e is a unit.
We do similarily with the inverse to c and get

$$
a c=b c \Rightarrow(a c) c^{-1}=(b c) c^{-1} \Rightarrow a\left(c c^{-1}\right)=b\left(c c^{-1}\right) \Rightarrow a e=b e \Rightarrow a=b
$$

b). Let G be the symmetry group of the tetrahedron. Number the faces $1,2,3,4$. Each symmetry will give a permutation in S_{4} in this way. The composition of symmetries corresponds to compositions of the permutations. Hence we have a homomorphism Φ : $G \longrightarrow S_{4}$. Since only the identity symmetry preserves all the faces, the kernel is trivial and we deduce that the homomorphism is injective.

No transpositions can be in the image, since there is no rotation that fixes two faces but interchanges the remaining two. On the other hand, all 3 -cycles occur in the image, since we have the rotations that fixes one of the vertices of the tetrahedron. Thus the image, which is a subgroup, has to be the alternating group A_{4}. Since an injective homomorphism is an isomorphism onto its image, we have established that G is isomorphic to A_{4}.
c). We know that S_{n} is generated by the adjacent transpositions, $s_{1}=(12), s_{2}=$ (23), $\ldots, s_{n-1}=(n-1 n)$. (We can see this by sorting lists.)
A_{n} are all the even permutations in S_{n}, which means all the permutations that can be written as a product of an even number of adjacent transpositions. Hence A_{n} is generated by all the products $s_{i} s_{j}$, where $i \neq j$.

We can write the given 3 -cycles as products of transpositions in the following way:

$$
(i i+1 i+2)=(1 i+1)(i+1 i+2)=s_{i} s_{i+1}
$$

Hence we can write

$$
\begin{aligned}
s_{i} s_{j} & =\left(s_{i} s_{i+1}\right)\left(s_{i+1} s_{i+2}\right) \cdots\left(s_{j-1} s_{j}\right) \\
& =(i i+1 i+2)(i+1 i+2 i+3) \cdots(j-1 j j+2)
\end{aligned}
$$

if $i<j$ and for $i<j$ we have $s_{i} s_{j}=\left(s_{j} s_{i}\right)^{-1}$.
Thus any even permutation is a product of the given 3-cycles.
(2) a) Define what it means for a group G to act on a set X and show that such an action gives a group homomorphism $\Phi: G \longrightarrow S_{X}$, where S_{X} is the group of bijective functions from X to X under composition.
b) Recall that the dihedral group, $D_{2 n}$, can be presented as a factor group of the free group $F[\{r, s\}]$ with the relations $r^{n}=s^{2}=r s r s=1$. Let X be the set of quadratic complex polynomials $q(x)$ in one variable and let $\xi=e^{2 \pi i / n}$. Show that

$$
\begin{equation*}
r . q(x)=\xi^{-2} q\left(\xi^{2} x\right) \quad \text { and } \quad s . q(x)=x^{2} q(1 / x) \tag{4}
\end{equation*}
$$

defines a well-defined action of $D_{2 n}$ on X.

Solution

a). An action of a group G on a set X is a function

$$
\begin{array}{ccc}
G \times X & \longrightarrow X \\
(a, x) & \longmapsto g \cdot x
\end{array}
$$

satisfying
i) $e . x=x$, for all $x \in X$.
ii) $(a b) \cdot x=a .(b . x)$, for all $a, b \in G$ and all $x \in X$.

When we have such an action, we get a homomorphism $\Phi: G \longrightarrow S_{x}$ by

$$
\Phi(a)(x)=x . a, \quad \forall a \in G, \forall x \in X .
$$

The function $\Phi(a): X \longrightarrow X$ is bijective, since it has an inverser, $\Phi\left(a^{-1}\right)$. In fact, we have that

$$
\Phi\left(a^{-1}\right)(\Phi(a)(x))=a^{-1} \cdot(a \cdot x)=\left(a^{-1} a\right) \cdot x=e \cdot x=x, \quad \forall x \in X .
$$

We have that Φ is a homomorphism since

$$
\Phi(a b) \cdot x=(a b) \cdot x=a \cdot(b \cdot x)=\Phi(a)(b \cdot x)=\Phi(a)(\Phi(b)(x)),
$$

for all $a, b \in G$ and all $x \in X$.
b). The action of r and s defines a homomorphism from the free group $F[\{r, s\}]$ to S_{X}, since the funtions given by

$$
q(x) \mapsto \xi^{-2} q(\xi x) \quad \text { and } \quad q(x) \mapsto x^{2} q(1 / x)
$$

are invertible with inverses

$$
q(x) \mapsto \xi^{2} q\left(\xi^{-1} x\right) \quad \text { and } \quad q(x) \mapsto x^{2} q(1 / x) .
$$

We check that the relations are in the kernel of this map by

$$
\begin{aligned}
r^{n} \cdot q(x) & =r^{n-1} \cdot(r \cdot q(x))=r^{n-1}\left(\xi^{-2} q(\xi x)\right)=r^{n-2} \cdot\left(x^{-4} q\left(\xi^{2} x\right)\right) \\
& =\cdots=\xi^{-2 n} q\left(\xi^{n} x\right)=q(x),
\end{aligned}
$$

and

$$
s^{2} \cdot q(x)=s .(s . q(x))=s .\left(x^{2} q(1 / x)\right)=x^{2}\left((1 / x)^{2} q(x)\right)=q(x) .
$$

Furthermore, we have that

$$
(r s) \cdot q(x)=r \cdot\left(x^{2} q(1 / x)\right)=\xi^{-2}\left((\xi x)^{2} q\left(\xi^{-1} / x\right)\right)=\xi^{2} x^{2} q\left(\xi^{-1} / x\right)
$$

and hence

$$
(r s)^{2} \cdot q(x)=\xi^{2} x^{2}\left(\xi^{2}\left(x^{-1} / x\right)^{2} q\left(\xi^{-1} /\left(\xi^{-1} / x\right)\right)=\xi^{2} x^{2} \xi^{-2} x^{-2} q(x)=q(x)\right.
$$

Hence we have that the kernel of the homomorphism $F[\{r, s\}] \longrightarrow S_{X}$ contains the relations and thus we have a well defined homomorphism

$$
D_{2 n} \longrightarrow S_{X}
$$

accoding to problem 3 .
(3) a) Show that if $\Phi: G \longrightarrow H$ is a group homomorphism and if K is a normal subgroup of G contained in $\operatorname{ker} \Phi$, then Φ factors through the natural quotient homomorphism $\Psi: G \longrightarrow G / K$, which sends an element of G to the coset containing it.
b) Use the result in a) to show that the sign homomorphism, sgn : $S_{4} \longrightarrow\{ \pm 1\}$, factors via $S_{4} \longrightarrow S_{3}$. (Hint: use $K=\{\operatorname{Id},(12)(34),(13)(24),(14)(23)\}$.)

Solution

a). Define the map $\Psi: G / K \longrightarrow H$ by $\Psi(a K)=\Phi(a)$. This is well-defined since $a K=b K$ is equivalent to $b^{-1} a \in K$, which implies that $\Phi\left(b^{-1} a\right)=e_{H}$ since $K \subseteq \operatorname{ker} \Phi$. Hence we get that $\Phi(b)^{-1} \Phi(a)=e_{H}$, i.e., $\Phi(b)=\Phi(a)$.

It is a homomorphism since

$$
\Psi(a K * b K)=\Psi(a b K)=\Phi(a b)=\Phi(a) \Phi(b)=\Psi(a K) \Psi(b K)
$$

for all $a K, b K \in G / K$. Now we have that $\operatorname{Phi}(a)=\Psi(a K)=\Psi(\Xi(a)$, where Ξ : $G \longrightarrow G / K$ is the homomorphism given by $\Xi(a)=a K$, for $a \in G$. This means that $\Phi=\Psi \circ \Xi$ and Φ factors through Ξ
b). Let $K=\{\operatorname{Id},(12)(34),(13)(24),(14)(23)\}$. Since K consists of all permutations of type $\left[1^{4}\right]=1+1+1+1$ and $\left[2^{2}\right]=2+2$ it is closed under conjugation. Furthermore, it is closed under composition and under taking inverses sice they all satisfy $\sigma^{2}=\operatorname{Id}$ and we have that

$$
\begin{aligned}
& (12)(34) \circ(13)(24)=(14)(23), \\
& (12)(34) \circ(14)(23)=(13)(24)
\end{aligned}
$$

and

$$
(13)(24) \circ(14)(23)=(12)(34)
$$

Thus K is a normal subgroup and since it consists of only even permutations, it is contained in the kernel A_{4} of the sign-homomorphism. Thus by the previous problem, sgn factors through $S_{4} \longrightarrow S_{4} / K$. Now S_{4} / K is a group of order $\left|S_{4}\right| /|K|=24 / 4=6$. Since S_{4} does not contain any element of order greater than 4 , the factor group S_{4} / K cannot do that either. Hence S_{4} / K is not cyclic and the only possibility is that $S_{4} / K \cong S_{3}$ since there is only one non-cyclic group of order 6 up to isomorphism. We have thus concluded that the sign homomorphism factors through S_{3} :

$$
S_{4} \longrightarrow S_{4} / K \cong S_{3} \longrightarrow\{ \pm 1\} .
$$

