KTH Teknikvetenskap

SF2729 Groups and Rings Suggested solutions to midterm exam
 Saturday, April 17, 2010

(1) a) Show directly from the axioms that a group G in which $a * a=e$, for all elements a, has to be abelian.
b) Find all subgroups of A_{4} and write down the subgroup lattice.
c) Show that if H and K are finite subgroups of a group G, we have that

$$
|H K|=\frac{[H|\cdot| K \mid}{|H \cap K|},
$$

where $H K=\{h k \mid h \in H, k \in K\}$.

Solution

a). If a and b are elements of a group that satisfies $a * a=e$ for all elements a, we get that

$$
(a * b) *(a * b)=e
$$

and if we multiply this to the left by a and to the right by b, we get

$$
a *(a * b) *(a * b) * b=(a * a) *(b * a) *(b * b)=(a * e) * b
$$

using the associativity. We now use that $a * a=b * b=e$ and that $a * e=a$ which together with the associativity yields

$$
e *(b * a) * e=a * b
$$

and hence

$$
b * a=a * b,
$$

since e is a unit. We conclude that the group has to be abelian if $a * a=e$ for all $a \in G$.
b). A_{4} consists of the twelve even permutations in S_{4}. Each of the elements generate a cyclic subgroup. The elements of order two $(i j)(k \ell)$ generate subgroups of order two and the eight elements of order three generate subgroups of order three. Thus we get one cyclic subgroup of order 1 , three of order 2 and four of order 3. By Lagrange's theorem, there could be subgroups of order $1,2,3,4,6$ and 12 . We have already found all the subgroups of order 1,2 and 3 , since these have to be cyclic. If there is a subgroup of order 4 it has to have only elements of order 1 and 2 , and since there are only four such elements, there is a unique possibility. This is an abelian subgroup, since the elements of order two commute. We are left to find the subgroups of order 6 , if there are any. Such a
subgroup cannot be cyclic. Hence it must be isomorphic to S_{3}. However, S_{3} contains three elements of order two, and they don't all commute. Since we only have three elements of order two in A_{4} and they all commute, there cannot be a subgroup isomorphic to S_{3}. Hence there are no subgroups of order 6 . The only containments between the proper nontrivial subgroups are between the subgroup of order four and the three subgroups of order two.
c). Since every element in $H K$ can be written as $h k$, where $h \in H$ and $k \in K$, we get that $H K$ is the union of the cosets of K which contains elements of H. This union is a partition of $H K$ since cosets are disjoint. We now have to count the number of such cosets. $h K=h^{\prime} K$ means that $h^{-1} h^{\prime} \in K$, but this happens only if $h^{-1} h^{\prime} \in H \cap K$. Thus the number of cosets in $H K$ is given by $|H| /|H \cap K|$ and since each coset has cardinality $|K|$, we get that

$$
|H K|=\frac{|H|}{|H \cap K|} \cdot|K|=\frac{|H| \cdot|K|}{|H \cap K|} .
$$

(2) a) Define what a normal subgroup is and show that there is a well-defined group structure on the set of cosets of a normal subgroup H of a group G.
b) Let G be the group of upper triangular matrices of the form

$$
\left(\begin{array}{ccc}
1 & a & b \tag{2}\\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right)
$$

in $\mathrm{Gl}_{3}\left(\mathbb{Z}_{3}\right)$. Determine the center $Z(G)$ and compute the factor group $G / Z(G)$.

Solution

a). A subgroup $H \leq G$ is normal if the left and right cosets agree, which means that $a H=H a$ for all $a \in G$ or equivalently $a H a^{-1}=H$, for all $a \in H$. We define the group structure on the factor group G / H for a normal subgroup H by

$$
a H * b H=a b H .
$$

We can see that this is well-defined since

$$
a H b H=a b H H=a b H
$$

as sets. Furthermore, associativity holds since

$$
\begin{aligned}
(a H * b H) * c H & =(a b H) * c H=(a b) c H \\
& =a(b c) H=a H * b c H=a H *(b H * c H) .
\end{aligned}
$$

The coset $e H$ is a unit since

$$
e H * a H=e a H=a H, \quad \forall a H \in G / H
$$

The inverse of the coset $a H$ is given by the coset $a^{-1} H$ since

$$
a H * a^{-1} H=a a^{-1} H=e H, \quad \forall a H \in G / H
$$

Thus we have a well-defined group structure on the set of cosets, G / H.
b). When we multiply two of the matrices we get

$$
\left(\begin{array}{ccc}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & a^{\prime} & b^{\prime} \\
0 & 1 & c^{\prime} \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
1 & a+a^{\prime} & b+b^{\prime}+a c^{\prime} \\
0 & 1 & c+c^{\prime} \\
0 & 0 & 1
\end{array}\right)
$$

In order for these matrices to commute, we need $a c^{\prime}=a^{\prime} c$. Thus if the firts matrix is in the center, we have $a c^{\prime}=a^{\prime} c$ for all choices of a^{\prime}, c^{\prime}. In particular, with $a^{\prime}=1$ and $c^{\prime}=0$, we get $c=0$ and with $a^{\prime}=0$ and $c^{\prime}=1$ we get $a=0$. On the other hand, if $a=c=0$, we always get $a c^{\prime}=a^{\prime} c$. Thus the center is given by

$$
Z(G)=\left\{\left(\begin{array}{ccc}
1 & 0 & b \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right): b \in \mathbb{Z}_{3}\right\}
$$

We can compute the cosets as

$$
\left(\begin{array}{ccc}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right) Z(G)=\left\{\left(\begin{array}{ccc}
1 & a & b+b^{\prime} \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right): b^{\prime} \in \mathbb{Z}_{3}\right\}
$$

When we multiply two cosets, we add the values of a and c. Thus we get that the factor group $G / Z(G)$ is isomorhic to $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$.
(3) a) Let H and K be normal ${ }^{1}$ subgroups of a group G such that $H K=G$ and $H \cap K=$ $\{e\}$. Show that $G \cong H \times K$
b) The symmetric group S_{4} can be presented by the generators $\left\{s_{1}, s_{2}, s_{3}\right\}$ and the relations $s_{1}^{2}=s_{2}^{2}=s_{3}^{2}=\left(s_{1} s_{2}\right)^{3}=\left(s_{1} s_{3}\right)^{2}=\left(s_{2} s_{3}\right)^{3}=e$. Use this in order to determine the automorphism group of S_{4}.

Solution

a). We can use the second isomorphism theorem since K is in the normalizer of H and vice versa. We get that $G / K \cong H$ and $G / H \cong K$. Thus we can define a homomorphism

$$
\Phi: G \longrightarrow G / K \times G / H \cong H \times K
$$

by $\Phi(g)=(g K, g H)$. The kernel is given by g such that $g K=K$ and $g H=H$, which is just $g \in H \cap K$. Thus Φ is injective. Furthermore, we have that if $h \in H$ and $k \in K$, we get that

$$
\Phi(h k)=(h k K, h k H)=(h K, h H k)=(h K, H k)=(h K, k H)
$$

which shows that Φ is surjective.

[^0]b). The genators must be mapped to elements which satisfies the same relations. Thus they need to be mapped to elements of order 2 . We have nine elements of order 2 , the six simple transpositions $(i j)$ and the three products of commuting transpositions, $(i j)(k \ell)$. However, the latter are even permutations, and the generators are odd. Hence we are forced to send s_{1}, s_{2} and s_{3} to simple transpositions. Once we decide on the image of s_{1}, there is a unique transposition which commutes with it. Thus we have six choices for the images of s_{1} and s_{3}. Once we decided this, we can choose the image of s_{2} to be any of the four remaining transpotitions, since the product of any of these with the two chosen ones are all of order three. Thus we have $6 \cdot 4$ different automorphisms. In order to get the group structure of the automorphism group, we can check that we have 24 different inner automorphisms, since the center of S_{4} is trivial. Therefore, the automorphism group is isomorphic to S_{4} and can be seen as the group of inner automorphisms of S_{4}.

[^0]: ${ }^{1}$ This was unfortunately not mentioned in original version of the exam.

