SF2729 Groups and Rings
 Make-up exam

Tuesday, June 4, 2013, 08:00-13:00

Examiner Tilman Bauer
Allowed aids none
Time 14:00-19:00
Present your solutions in such a way that the arguments and calculations are easy to follow. Provide detailed arguments to your answers. An answer without explanation will give few or no points.

Each problem is worth 6 points, for a total of 36 points. Your end score will be the better of the exam score and the weighted average

$$
0.7 \frac{\text { exam score }}{36}+0.3 \frac{\text { passed homeworks }}{14} .
$$

It is thus important that you do all problems even if you scored high on the homework. Good luck!

Problem 1

Let G be a group. An automorphism $\phi: G \rightarrow G$ is simply an isomorphism from G to itself. A subgroup $H \leq G$ is a characteristic subgroup if for any automorphism $\phi: G \rightarrow G$, then $\phi(H)=H$. Show that the center, $Z(G)$, of G is a characteristic subgroup.

Problem 2

Show that a group of order 1001 cannot be simple i.e., it must have a non-trivial proper normal subgroup.

Problem 3

Let G be a group and let $x, y \in G$. Suppose that $[x, y] \in Z(G)$; show that $x^{n} y^{n}=$ $(x y)^{n}[x, y]^{\frac{n(n-1)}{2}}$ for all integers $n \geq 0$.

Problem 4

Let X be a set and let $\mathcal{P}(X)$ denote the power set of X, i. e. the set of all subsets of X. For $S, T \in \mathcal{P}(X)$, define

$$
S+T=(S \cup T)-(S \cap T) \quad \text { and } \quad S \cdot T=S \cap T
$$

1. Show that this defines a unital ring structure on $\mathcal{P}(X)$. State explicitly what the zero element, the unity, and the negative of an element is. (3 points)
2. Denote by $F(X, \mathbf{Z} / 2 \mathbf{Z})$ the ring of functions from X to $\mathbf{Z} / 2 \mathbf{Z}$, where addition and multiplication are defined by $(f+g)(x)=f(x)+g(x)$ and $(f \cdot g)(x)=f(x) g(x)$. Show that $\mathcal{P}(X)$ and $F(X, \mathbf{Z} / 2 \mathbf{Z})$ are isomorphic rings. (3 points)

Problem 5

Show that for every $n \in \mathbf{N}$ there exists an irreducible polynomial of degree n over \mathbf{Q}. When using a theorem from this class, write down its full statement. (6 points)

Problem 6

Let A be a finitely generated abelian group. For every prime number p, the module $A / p A$ is a vector space over $\mathbf{Z} / p \mathbf{Z}$; denote by n_{p} its dimension.

1. Show that if A is torsion then $n_{p}=0$ for all but finitely many p. (3 points)
2. Show that if all n_{p} are the same then A is a free abelian group. (3 points)
