SF2729 Groups and Rings
 Make-up exam

Wednesday, May 21, 2014

Examiner Tilman Bauer

Allowed aids none

Time 14:00-19:00

Present your solutions in such a way that the arguments and calculations are easy to follow. Provide detailed arguments to your answers. An answer without explanation will give few or no points.

Each problem is worth 6 points, for a total of 36 points. Your end score will be the better of the exam score and the weighted average

$$
0.75 \text { (exam score) }+0.25 \text { (homework score). }
$$

It is thus important that you do all problems even if you scored high on the homework. Good luck!

Problem 1

Let G be a group with an element x such that $x y x=y^{3}$ for all $y \in G$. Show that

1. $x^{2}=e(1 \mathrm{p})$;
2. $y^{8}=e$ for all $y \in G(5 p)$.

Solution

For $y=e$ we get that $x^{2}=x e x=e^{3}=e$. From this we get

$$
y=x^{2} y x^{2}=x(x y x) x=x y^{3} x=\left(y^{3}\right)^{3}=y^{9}
$$

Dividing by y gives $y^{8}=1$.

Problem 2

Let G be a simple group of order $168=2^{3} \cdot 3 \cdot 7$ (i. e. a group with no nontrivial normal subgroups). How many elements of order 7 does G have?

Solution

By the Sylow theorems, $n_{7} \equiv 1(\bmod 7)$ and $n_{7} \mid 24$. Since the group is simple, $n_{7} \neq 1$ (otherwise the Sylow 7 -subgroup would be normal), so $n_{7}=8$ is the only possibility. All eight Sylow 7 -subgroups intersect trivially, and every element of order 7 is contained in some Sylow 7 -subgroup, so the number of elements of order 7 is

$$
8 \cdot(7-1)=48 .
$$

Problem 3

Let G be a finite group such that p is the smallest prime divisor of $|G|$, and let H be a subgroup of index p. Show that H is normal. You can (but do not have to) follow the following outline of a proof:

1. Define a homomorphism $\phi: G \rightarrow S_{p}$, the symmetric group on p letters, using the action of G on the set G / H, and show that the $|\operatorname{im}(\phi)|$ divides $|G|$. (2p)
2. Show that $|\operatorname{im}(\phi)|=p$. $(2 p)$
3. Show that $H=\operatorname{ker}(\phi)$, and thus H is a normal subgroup. (2p)

Solution

The group G acts on the set G / H by left multiplication. Thus we obtain a homomorphism $\phi: G \rightarrow S_{p}$, where S_{p} is identified with the group of bijections of G / H. Thus the order of the image of ϕ divides $p!$. But the order of the image is isomorphic to the index of the stabilizer and thus also divides the order of G. Thus $|\phi(G)| \mid \operatorname{gcd}(p!,|G|)=p$. If $|\phi(G)|=1$ then $G=H$, which cannot happen. Thus $|\phi(G)|=p$. Since $H \subseteq \operatorname{ker}(\phi)$, we must have that $H=\operatorname{ker}(\phi)$ because both subgroups of G have index p. Thus H is normal.

Problem 4

Let k be a field and consider the ring $R=k[x] /\left(x^{2}-1\right)$.

1. Show that the ring R is isomorphic with $k[y] /\left(y^{2}\right)$ if $2=0$ in k. (3p)
2. Show that the ring R is isomorphic with $k \times k$ if $2 \neq 0$ in k. (3p)

Solution

If $2=0$ in k then $x^{2}-1=(x-1)^{2}$, thus the map $k[y] /\left(y^{2}\right) \rightarrow k[x] /\left(x^{2}-1\right)$ sending $a+b y$ to $a+b(x-1)$ is a ring isomorphism.

If $2 \neq 0$, define a map $\phi: R \rightarrow k \times k$ by $\phi([p])=(p(1), p(-1))$ for $p \in k[x]$. This is well-defined since 1 and -1 are both zeroes of $x^{2}-1$. As a product of evaluation
homomorphisms, ϕ is a ring homomorphism. To show it is injective, assume $p(1)=$ $p(-1)=0$. Thus $(x-1)(x+1) \mid p$, hence $[p]=0 \in k[x] /\left(x^{2}-1\right)$. For surjectivity, note that

$$
\phi\left(\frac{a+b}{2}+\frac{a-b}{2} x\right)=(a, b),
$$

using that $2 \neq 0$ in k.

Problem 5

Compute $\operatorname{gcd}(7-4 \sqrt{d}, 8-\sqrt{d})$ in the $\operatorname{ring} \mathbf{Z}[\sqrt{d}]$ for $d=-1$ and $d=-2$. (3p each)

Solution

The Euclidean algorithm for $d=-1$ gives $8-i=(7-4 i)+(1+3 i), 7-4 i=-2 i(1+$ $3 i)+1-2 i$, and a gcd is $1-2 i$.

For $\operatorname{gcd}(7-4 \sqrt{-2}, 8-\sqrt{-2})$, we perform the first step of the Euclidean algorithm, $7-4 \sqrt{-2}=1 \cdot(8-\sqrt{-2})-1-3 \sqrt{-2}$. The remainder has norm $1^{2}+2 \cdot 3^{2}=19$, whereas $N(8-\sqrt{-2})=8^{2}+2=66$. Since the norms are coprime, so are the numbers, hence the gcd is 1 .

Problem 6

Let R be a principal ideal domain which is not a field, and M a finitely generated R module. Show that for every $x \in M-\{0\}$ there is an $r \in R-\{0\}$ such that x is not divisible by r, i. e. there is no $y \in M$ such that $r y=x$.

Solution

The statement is trivially true for $M=\{0\}$. Otherwise, by the structure theorem, M is isomorphic to a direct sum of a free module R^{n} and torsion modules of the from $R /\left(p^{k}\right)$ for various primes p and natural numbers k, and it suffices to consider the cases $M=R$ and $M=R /\left(p^{k}\right)$. If $M=R /\left(p^{k}\right)$ then no $x \in M-\{0\}$ is divisible by p^{k}. If on the other hand $M=R, x \in M-\{0\}$, choose a prime element $p \in R$ (which exists since R is not a field) and write $x=p^{a} z$ with $p \nmid z$, which is uniquely possible because R is a UFD. Then x is not divisible by p^{a+1} since that would imply $p \mid z$.

