SF2729 Groups and Rings Make-up exam

KTH KCH KONST SE OCH KONST SE

Wednesday, May 21, 2014

Examiner Tilman Bauer

Allowed aids none

Time 14:00–19:00

Present your solutions in such a way that the arguments and calculations are easy to follow. Provide detailed arguments to your answers. An answer without explanation will give few or no points.

Each problem is worth 6 points, for a total of 36 points. Your end score will be the better of the exam score and the weighted average

0.75 (exam score) + 0.25 (homework score).

It is thus important that you do **all problems** even if you scored high on the homework. Good luck!

Problem 1

Let *G* be a group with an element *x* such that $xyx = y^3$ for all $y \in G$. Show that

1.
$$x^2 = e(1p);$$

2. $y^8 = e$ for all $y \in G$ (5p).

Solution

For y = e we get that $x^2 = xex = e^3 = e$. From this we get

$$y = x^2yx^2 = x(xyx)x = xy^3x = (y^3)^3 = y^9.$$

Dividing by *y* gives $y^8 = 1$.

Problem 2

Let *G* be a simple group of order $168 = 2^3 \cdot 3 \cdot 7$ (i. e. a group with no nontrivial normal subgroups). How many elements of order 7 does *G* have?

Solution

By the Sylow theorems, $n_7 \equiv 1 \pmod{7}$ and $n_7 \mid 24$. Since the group is simple, $n_7 \neq 1$ (otherwise the Sylow 7-subgroup would be normal), so $n_7 = 8$ is the only possibility. All eight Sylow 7-subgroups intersect trivially, and every element of order 7 is contained in some Sylow 7-subgroup, so the number of elements of order 7 is

$$8 \cdot (7-1) = 48.$$

Problem 3

Let *G* be a finite group such that *p* is the smallest prime divisor of |G|, and let *H* be a subgroup of index *p*. Show that *H* is normal. You can (but do not have to) follow the following outline of a proof:

- 1. Define a homomorphism $\phi \colon G \to S_p$, the symmetric group on *p* letters, using the action of *G* on the set *G*/*H*, and show that the $|\operatorname{im}(\phi)|$ divides |G|. (2p)
- 2. Show that $|im(\phi)| = p$. (2p)
- 3. Show that $H = \text{ker}(\phi)$, and thus *H* is a normal subgroup. (2p)

Solution

The group *G* acts on the set *G*/*H* by left multiplication. Thus we obtain a homomorphism $\phi: G \to S_p$, where S_p is identified with the group of bijections of *G*/*H*. Thus the order of the image of ϕ divides *p*!. But the order of the image is isomorphic to the index of the stabilizer and thus also divides the order of *G*. Thus $|\phi(G)| | \gcd(p!, |G|) = p$. If $|\phi(G)| = 1$ then G = H, which cannot happen. Thus $|\phi(G)| = p$. Since $H \subseteq \ker(\phi)$, we must have that $H = \ker(\phi)$ because both subgroups of *G* have index *p*. Thus *H* is normal.

Problem 4

Let *k* be a field and consider the ring $R = k[x]/(x^2 - 1)$.

- 1. Show that the ring *R* is isomorphic with $k[y]/(y^2)$ if 2 = 0 in *k*. (3p)
- 2. Show that the ring *R* is isomorphic with $k \times k$ if $2 \neq 0$ in *k*. (3p)

Solution

If 2 = 0 in *k* then $x^2 - 1 = (x - 1)^2$, thus the map $k[y]/(y^2) \to k[x]/(x^2 - 1)$ sending a + by to a + b(x - 1) is a ring isomorphism.

If $2 \neq 0$, define a map $\phi \colon R \to k \times k$ by $\phi([p]) = (p(1), p(-1))$ for $p \in k[x]$. This is well-defined since 1 and -1 are both zeroes of $x^2 - 1$. As a product of evaluation

homomorphisms, ϕ is a ring homomorphism. To show it is injective, assume p(1) = p(-1) = 0. Thus $(x - 1)(x + 1) \mid p$, hence $[p] = 0 \in k[x]/(x^2 - 1)$. For surjectivity, note that

$$\phi(\frac{a+b}{2}+\frac{a-b}{2}x)=(a,b),$$

using that $2 \neq 0$ in *k*.

Problem 5

Compute $gcd(7 - 4\sqrt{d}, 8 - \sqrt{d})$ in the ring $\mathbb{Z}[\sqrt{d}]$ for d = -1 and d = -2. (3p each)

Solution

The Euclidean algorithm for d = -1 gives 8 - i = (7 - 4i) + (1 + 3i), 7 - 4i = -2i(1 + 3i) + 1 - 2i, and a gcd is 1 - 2i.

For $gcd(7 - 4\sqrt{-2}, 8 - \sqrt{-2})$, we perform the first step of the Euclidean algorithm, $7 - 4\sqrt{-2} = 1 \cdot (8 - \sqrt{-2}) - 1 - 3\sqrt{-2}$. The remainder has norm $1^2 + 2 \cdot 3^2 = 19$, whereas $N(8 - \sqrt{-2}) = 8^2 + 2 = 66$. Since the norms are coprime, so are the numbers, hence the gcd is 1.

Problem 6

Let *R* be a principal ideal domain which is not a field, and *M* a finitely generated *R*-module. Show that for every $x \in M - \{0\}$ there is an $r \in R - \{0\}$ such that *x* is not divisible by *r*, i. e. there is no $y \in M$ such that ry = x.

Solution

The statement is trivially true for $M = \{0\}$. Otherwise, by the structure theorem, M is isomorphic to a direct sum of a free module R^n and torsion modules of the from $R/(p^k)$ for various primes p and natural numbers k, and it suffices to consider the cases M = R and $M = R/(p^k)$. If $M = R/(p^k)$ then no $x \in M - \{0\}$ is divisible by p^k . If on the other hand M = R, $x \in M - \{0\}$, choose a prime element $p \in R$ (which exists since R is not a field) and write $x = p^a z$ with $p \nmid z$, which is uniquely possible because R is a UFD. Then x is not divisible by p^{a+1} since that would imply $p \mid z$.