SF2729 Groups and Rings Make-up exam

Wednesday, May 21, 2014

Examiner Tilman Bauer

Allowed aids none

Time 14:00-19:00

Present your solutions in such a way that the arguments and calculations are easy to follow. Provide detailed arguments to your answers. An answer without explanation will give few or no points.

Each problem is worth 6 points, for a total of 36 points. Your end score will be the better of the exam score and the weighted average

0.75 (exam score) + 0.25 (homework score).

It is thus important that you do **all problems** even if you scored high on the homework. Good luck!

Problem 1

Let *G* be a group with an element *x* such that $xyx = y^3$ for all $y \in G$. Show that

1.
$$x^2 = e(1p);$$

2. $y^8 = e$ for all $y \in G$ (5p).

Problem 2

Let *G* be a simple group of order $168 = 2^3 \cdot 3 \cdot 7$ (i. e. a group with no nontrivial normal subgroups). How many elements of order 7 does *G* have?

please turn over

Problem 3

Let *G* be a finite group such that *p* is the smallest prime divisor of |G|, and let *H* be a subgroup of index *p*. Show that *H* is normal. You can (but do not have to) follow the following outline of a proof:

- 1. Define a homomorphism $\phi: G \to S_p$, the symmetric group on *p* letters, using the action of *G* on the set *G*/*H*, and show that the $|\operatorname{im}(\phi)|$ divides |G|. (2p)
- 2. Show that $|im(\phi)| = p$. (2p)
- 3. Show that $H = \text{ker}(\phi)$, and thus *H* is a normal subgroup. (2p)

Problem 4

Let *k* be a field and consider the ring $R = k[x]/(x^2 - 1)$.

- 1. Show that the ring *R* is isomorphic with $k[y]/(y^2)$ if 2 = 0 in *k*. (3p)
- 2. Show that the ring *R* is isomorphic with $k \times k$ if $2 \neq 0$ in *k*. (3p)

Problem 5

Compute $gcd(7 - 4\sqrt{d}, 8 - \sqrt{d})$ in the ring $\mathbb{Z}[\sqrt{d}]$ for d = -1 and d = -2. (3p each)

Problem 6

Let *R* be a principal ideal domain which is not a field, and *M* a finitely generated *R*-module. Show that for every $x \in M - \{0\}$ there is an $r \in R - \{0\}$ such that *x* is not divisible by *r*, i. e. there is no $y \in M$ such that ry = x.