SF2729 Groups and Rings
 Make-up exam

Wednesday, May 21, 2014

Examiner Tilman Bauer

Allowed aids none

Time 14:00-19:00

Present your solutions in such a way that the arguments and calculations are easy to follow. Provide detailed arguments to your answers. An answer without explanation will give few or no points.

Each problem is worth 6 points, for a total of 36 points. Your end score will be the better of the exam score and the weighted average

$$
0.75 \text { (exam score) }+0.25 \text { (homework score). }
$$

It is thus important that you do all problems even if you scored high on the homework. Good luck!

Problem 1

Let G be a group with an element x such that $x y x=y^{3}$ for all $y \in G$. Show that

1. $x^{2}=e(1 \mathrm{p})$;
2. $y^{8}=e$ for all $y \in G(5 p)$.

Problem 2

Let G be a simple group of order $168=2^{3} \cdot 3 \cdot 7$ (i. e. a group with no nontrivial normal subgroups). How many elements of order 7 does G have?

Problem 3

Let G be a finite group such that p is the smallest prime divisor of $|G|$, and let H be a subgroup of index p. Show that H is normal. You can (but do not have to) follow the following outline of a proof:

1. Define a homomorphism $\phi: G \rightarrow S_{p}$, the symmetric group on p letters, using the action of G on the set G / H, and show that the $|\operatorname{im}(\phi)|$ divides $|G|$. (2p)
2. Show that $|\operatorname{im}(\phi)|=p$. $(2 \mathrm{p})$
3. Show that $H=\operatorname{ker}(\phi)$, and thus H is a normal subgroup. (2p)

Problem 4

Let k be a field and consider the ring $R=k[x] /\left(x^{2}-1\right)$.

1. Show that the ring R is isomorphic with $k[y] /\left(y^{2}\right)$ if $2=0$ in k. (3p)
2. Show that the ring R is isomorphic with $k \times k$ if $2 \neq 0$ in k. (3p)

Problem 5

Compute $\operatorname{gcd}(7-4 \sqrt{d}, 8-\sqrt{d})$ in the ring $\mathbf{Z}[\sqrt{d}]$ for $d=-1$ and $d=-2$. (3p each)

Problem 6

Let R be a principal ideal domain which is not a field, and M a finitely generated R module. Show that for every $x \in M-\{0\}$ there is an $r \in R-\{0\}$ such that x is not divisible by r, i. e. there is no $y \in M$ such that $r y=x$.

