
SF2729 Groups and Rings
Final exam solutions

Monday, March 11, 2013

Problem 1

Let G be a group. A subgroup H of a group G is a fully invariant subgroup if for any
homomorphism φ : G → G we have φ(H) ≤ H. Show that the commutator subgroup
[G, G] of G is a fully invariant subgroup.

Solution

We have to show that φ([G, G]) ⊆ [G, G]. It suffices to show that the image of a commu-
tator under a homomorphism is a commutator. Indeed,

φ([g, h]) = φ(ghg−1h−1) = φ(g)φ(h)φ(g)−1φ(h)−1 = [φ(g), φ(h)].

Problem 2

Show that a group of order 495 cannot be simple i.e., it must have a non-trivial proper
normal subgroup.

Solution

The prime decomposition of 495 is 5 · 32 · 11. By Sylow’s theorem, the number of p-Sylow
subgroups if congruent to 1 modulo p and divides the order of the group. We can thus
have 1 or 45 different 11-Sylow subgroups, and 1 or 55 different 3-Sylows (or order 9). If
there is only one p-Sylow subgroup, it has to be normal. Thus assume that the number of
11-Sylows is 45 and the number of 3-Sylows is 55. Since their pairwise intersect is only the
identity, this would mean that the group has at least 1 + (11− 1) · 45 + (3− 1) · 55 = 561
elements, which is a contradiction. Hence either an 11-Sylow or a 3-Sylow has to be
normal.

Problem 3

Let G be a group and let x, y ∈ G. Suppose that [x, y] ∈ Z(G); show that [xn, y] = [x, y]n

for all integers n ≥ 0.



Solution

We use induction, the cases n = 0 and n = 1 being trivial. Then

[xn+1, y] = xnxyx−1y−1yx−ny−1 = xn[x, y]yx−ny−1 = xnyx−ny−1[x, y] = [x, y]n[x, y],

where the last equality uses the inductive assumption.

Problem 4

Let A be an abelian group and define a multiplication on the abelian group R = Z× A
by

(n, a) · (m, b) = (nm, nb + ma).

1. Show that this defines a unital ring structure on R = Z× A by verifying the axioms.
State explicitly what the zero and unity elements are. (3 points)

2. Show that the group of units R× is isomorphic to Z/2× A. (3 points)

Solution

The multiplication is symmetric in the factors and hence commutative. The zero element
is (0, 0) (given by the product groups structure on Z× A) and the unity is (1, 0). Check:

(1, 0) · (n, a) = (1 · n, 1 · a + n · 0) = (n, a).

For distributivity, we compute

(n1 + n2, a1 + a2) · (m, b) = ((n1 + n2)m, (n1 + n2)b + m(a1 + a2))

= (n1m, n1b + ma1) + (n2m, n2b + ma2) = (n1, a1) · (m, b) + (n2, a2) · (m, b).

For associativity, we have

((n, a) · (m, b)) · (k, c) = (nm, nb + ma) · (k, c) = (nmk, knb + kma + nmc)
= (n, a) · (km, kb + mc) = (n, a) · ((m, b) · (k, c))

An element (n, a) is invertible iff there exist (m, b) such that (nm, nb + ma) = (1, 0),
i. e. if n = ±1. In this case,

(n, a)−1 = (n,−a).

Thus R× = {(n, a) | n = ±1}. An isomorphism φ : Z/2× A→ R× is given by

φ(ε, a) = ((−1)ε, (−1)εa).

This is obviously bijective; to verify it is a homomorphism, we compute

φ((ε, a)(δ, b)) = φ(ε + δ, a + b) = ((−1)ε+δ, (−1)ε+δ(a + b))

and

φ(ε, a) · φ(ε, b) = ((−1)ε), (−1)εa) · ((−1)δ, (−1)δb) = ((−1)ε+δ, (−1)ε+δ(a + b))



Problem 5

Let R be a commutative ring possessing exactly three ideals (0) ( I ( R.

1. Show that I = R− R×, i. e. that I consists precisely of the nonunits of R. (4 points)

2. Give a concrete example of such a ring. (2 points)

Solution

If I contained a unit, it would be all of R, hence I ⊆ R− R×. For the other inclusion, let
x 6= 0 be a nonunit. Then the principal ideal (x) is neither 0 nor R because it contains x
and if 1 were an element of (x) then x would have an inverse. Thus (x) = I, in particular,
x ∈ I.

An example of such a ring is Z/4Z with the ideals (0) ( (2) ( Z/4Z.

Problem 6

Let R = Z[i] be the ring of Gaussian integers and consider the submodule M < R2

generated by the single element (2, 1 + i). According to the structure theorem of finitely
generated modules over PIDs, the quotient module R2/M is isomorphic to a sum of a
free module and modules of the form R/(pn), where p is a prime element. Find this
decomposition and the corresponding isomorphism.

Solution

I claim that R2/M ∼= Z[i]⊕ Z[i]/(1 + i) ∼= Z[i]⊕ Z/2Z by the following isomorphism:

φ : Z[i]⊕ Z[i]/(1 + i)→ R2/M, φ(x, [y]) = [(x + (1− i)y, y)].

First for well-definedness: if y′ = y + r(1 + i) for some r ∈ Z[i] then

φ(x, [y′])− φ(x, [y]) = [(r(1 + i)(1− i), r(1 + i))] = [r · (2, 1 + i)] = 0 ∈ R2/M.

By definition, φ is a homomorphism. For injectivity, Assume φ(x, [y]) = 0, thus

(x + (1− i)y, y) = r · (2, 1 + i) = r(1 + i) · (1− i, 1) for some r ∈ Z[i].

Then y = r(1 + i) and hence x + (1− i)y = x + 2r = 2r, hence x = 0 and [y] = 0 ∈
Z[i]/(1 + i). For surjectivity, let [(x, y)] ∈ R2/M. Then

φ(x− (1− i)y, y) = [(x− (1− i)y + (1− i)y, y)] = [(x, y)].


