SF2729 Groups and Rings Final exam solutions

Monday, March 11, 2013

Problem 1

Let G be a group. A subgroup H of a group G is a fully invariant subgroup if for any homomorphism $\phi: G \rightarrow G$ we have $\phi(H) \leq H$. Show that the commutator subgroup $[G, G]$ of G is a fully invariant subgroup.

Solution

We have to show that $\phi([G, G]) \subseteq[G, G]$. It suffices to show that the image of a commutator under a homomorphism is a commutator. Indeed,

$$
\phi([g, h])=\phi\left(g h g^{-1} h^{-1}\right)=\phi(g) \phi(h) \phi(g)^{-1} \phi(h)^{-1}=[\phi(g), \phi(h)] .
$$

Problem 2

Show that a group of order 495 cannot be simple i.e., it must have a non-trivial proper normal subgroup.

Solution

The prime decomposition of 495 is $5 \cdot 3^{2} \cdot 11$. By Sylow's theorem, the number of p-Sylow subgroups if congruent to 1 modulo p and divides the order of the group. We can thus have 1 or 45 different 11 -Sylow subgroups, and 1 or 55 different 3 -Sylows (or order 9). If there is only one p-Sylow subgroup, it has to be normal. Thus assume that the number of 11 -Sylows is 45 and the number of 3 -Sylows is 55 . Since their pairwise intersect is only the identity, this would mean that the group has at least $1+(11-1) \cdot 45+(3-1) \cdot 55=561$ elements, which is a contradiction. Hence either an 11-Sylow or a 3-Sylow has to be normal.

Problem 3

Let G be a group and let $x, y \in G$. Suppose that $[x, y] \in Z(G)$; show that $\left[x^{n}, y\right]=[x, y]^{n}$ for all integers $n \geq 0$.

Solution

We use induction, the cases $n=0$ and $n=1$ being trivial. Then

$$
\left[x^{n+1}, y\right]=x^{n} x y x^{-1} y^{-1} y x^{-n} y^{-1}=x^{n}[x, y] y x^{-n} y^{-1}=x^{n} y x^{-n} y^{-1}[x, y]=[x, y]^{n}[x, y]
$$

where the last equality uses the inductive assumption.

Problem 4

Let A be an abelian group and define a multiplication on the abelian group $R=\mathbf{Z} \times A$ by

$$
(n, a) \cdot(m, b)=(n m, n b+m a)
$$

1. Show that this defines a unital ring structure on $R=\mathbf{Z} \times A$ by verifying the axioms. State explicitly what the zero and unity elements are. (3 points)
2. Show that the group of units R^{\times}is isomorphic to $\mathbf{Z} / 2 \times A$. (3 points)

Solution

The multiplication is symmetric in the factors and hence commutative. The zero element is $(0,0)$ (given by the product groups structure on $\mathbf{Z} \times A$) and the unity is $(1,0)$. Check:

$$
(1,0) \cdot(n, a)=(1 \cdot n, 1 \cdot a+n \cdot 0)=(n, a)
$$

For distributivity, we compute

$$
\begin{aligned}
& \left(n_{1}+n_{2}, a_{1}+a_{2}\right) \cdot(m, b)=\left(\left(n_{1}+n_{2}\right) m,\left(n_{1}+n_{2}\right) b+m\left(a_{1}+a_{2}\right)\right) \\
& \quad=\left(n_{1} m, n_{1} b+m a_{1}\right)+\left(n_{2} m, n_{2} b+m a_{2}\right)=\left(n_{1}, a_{1}\right) \cdot(m, b)+\left(n_{2}, a_{2}\right) \cdot(m, b)
\end{aligned}
$$

For associativity, we have

$$
\begin{array}{r}
((n, a) \cdot(m, b)) \cdot(k, c)=(n m, n b+m a) \cdot(k, c)=(n m k, k n b+k m a+n m c) \\
=(n, a) \cdot(k m, k b+m c)=(n, a) \cdot((m, b) \cdot(k, c))
\end{array}
$$

An element (n, a) is invertible iff there exist (m, b) such that $(n m, n b+m a)=(1,0)$, i. e. if $n= \pm 1$. In this case,

$$
(n, a)^{-1}=(n,-a)
$$

Thus $R^{\times}=\{(n, a) \mid n= \pm 1\}$. An isomorphism $\phi: \mathbf{Z} / 2 \times A \rightarrow R^{\times}$is given by

$$
\phi(\epsilon, a)=\left((-1)^{\epsilon},(-1)^{\epsilon} a\right)
$$

This is obviously bijective; to verify it is a homomorphism, we compute

$$
\phi((\epsilon, a)(\delta, b))=\phi(\epsilon+\delta, a+b)=\left((-1)^{\epsilon+\delta},(-1)^{\epsilon+\delta}(a+b)\right)
$$

and

$$
\left.\phi(\epsilon, a) \cdot \phi(\epsilon, b)=\left((-1)^{\epsilon}\right),(-1)^{\epsilon} a\right) \cdot\left((-1)^{\delta},(-1)^{\delta} b\right)=\left((-1)^{\epsilon+\delta},(-1)^{\epsilon+\delta}(a+b)\right)
$$

Problem 5

Let R be a commutative ring possessing exactly three ideals $(0) \subsetneq I \subsetneq R$.

1. Show that $I=R-R^{\times}$, i. e. that I consists precisely of the nonunits of R. (4 points)
2. Give a concrete example of such a ring. (2 points)

Solution

If I contained a unit, it would be all of R, hence $I \subseteq R-R^{\times}$. For the other inclusion, let $x \neq 0$ be a nonunit. Then the principal ideal (x) is neither 0 nor R because it contains x and if 1 were an element of (x) then x would have an inverse. Thus $(x)=I$, in particular, $x \in I$.

An example of such a ring is $\mathbf{Z} / 4 \mathbf{Z}$ with the ideals $(0) \subsetneq(2) \subsetneq \mathbf{Z} / 4 \mathbf{Z}$.

Problem 6

Let $R=\mathbf{Z}[i]$ be the ring of Gaussian integers and consider the submodule $M<R^{2}$ generated by the single element $(2,1+i)$. According to the structure theorem of finitely generated modules over PIDs, the quotient module R^{2} / M is isomorphic to a sum of a free module and modules of the form $R /\left(p^{n}\right)$, where p is a prime element. Find this decomposition and the corresponding isomorphism.

Solution

I claim that $R^{2} / M \cong \mathbf{Z}[i] \oplus \mathbf{Z}[i] /(1+i) \cong \mathbf{Z}[i] \oplus \mathbf{Z} / \mathbf{Z} \mathbf{Z}$ by the following isomorphism:

$$
\phi: \mathbf{Z}[i] \oplus \mathbf{Z}[i] /(1+i) \rightarrow R^{2} / M, \quad \phi(x,[y])=[(x+(1-i) y, y)] .
$$

First for well-definedness: if $y^{\prime}=y+r(1+i)$ for some $r \in \mathbf{Z}[i]$ then

$$
\phi\left(x,\left[y^{\prime}\right]\right)-\phi(x,[y])=[(r(1+i)(1-i), r(1+i))]=[r \cdot(2,1+i)]=0 \in R^{2} / M .
$$

By definition, ϕ is a homomorphism. For injectivity, Assume $\phi(x,[y])=0$, thus

$$
(x+(1-i) y, y)=r \cdot(2,1+i)=r(1+i) \cdot(1-i, 1) \quad \text { for some } r \in \mathbf{Z}[i] .
$$

Then $y=r(1+i)$ and hence $x+(1-i) y=x+2 r=2 r$, hence $x=0$ and $[y]=0 \in$ $\mathbf{Z}[i] /(1+i)$. For surjectivity, let $[(x, y)] \in R^{2} / M$. Then

$$
\phi(x-(1-i) y, y)=[(x-(1-i) y+(1-i) y, y)]=[(x, y)] .
$$

