SF2729 Groups and Rings Make-up exam: solutions

Tuesday, June 4, 2013, 08:00-13:00

Problem 1

Let G be a group. An automorphism $\phi: G \rightarrow G$ is simply an isomorphism from G to itself. A subgroup $H \leq G$ is a characteristic subgroup if for any automorphism $\phi: G \rightarrow G$, then $\phi(H)=H$. Show that the center, $Z(G)$, of G is a characteristic subgroup.

Solution:

It suffices to show $\phi(Z(G)) \subseteq Z(G)$; for the other inclusion one can take ϕ^{-1}. We thus need to show that if $z \in Z(G)$ then $\phi(z) \in Z(G)$. Let $a \in G$. Then

$$
[\phi(z), a]=\left[\phi(z), \phi\left(\phi^{-1}(a)\right)\right]=\phi\left(\left[z, \phi^{-1}(a)\right]\right)=\phi(1)=1
$$

since $z \in \mathbf{Z}(G)$.

Problem 2

Show that a group of order 1001 cannot be simple i.e., it must have a non-trivial proper normal subgroup.

Solution:

We have $1001=7 \cdot 11 \cdot 13$. Let $n_{k}(k=7,11,13)$ be the number of k-Sylow subgroups of the group. By the Sylow theorems, we have

$$
n_{7} \mid 143, \quad n_{7} \equiv 1 \quad(\bmod 7)
$$

The only divisor of $143=11 \cdot 13$ which is 1 modulo 7 is 1 itself, hence $n_{7}=1$ and the 7 -Sylow subgroup is normal. Thus the group is not simple.

Problem 3

Let G be a group and let $x, y \in G$. Suppose that $[x, y] \in Z(G)$; show that $x^{n} y^{n}=$ $(x y)^{n}[x, y]^{\frac{n(n-1)}{2}}$ for all integers $n \geq 0$.

Solution:

By induction, the case $n=1$ being trivial. For the inductive step, we first show by nested induction:

$$
\left[x^{n}, y\right]=[x, y]^{n}:
$$

Again, this is clear for $n=1$. For the inductive step, we compute, using that $[x, y]$ is in the center,

$$
\left[x^{n+1}, y\right]=x^{n} x y x^{-1} y^{-1} y x^{-(n-1)} y^{-1}=x^{n}[x, y] y x^{-(n-1)} y^{-1}=[x, y]\left[x^{n-1}, y\right]=[x, y]^{n} .
$$

Using this, we have have
$\left.(x y)^{n+1}[x, y]^{(n+1} 2\right)=(x y)(x y)^{n}[x, y]^{\binom{n}{2}}[x, y]^{n}=(x y) x^{n} y^{n}[x, y]^{n}=x[x, y]^{n} y x^{n} y^{n}=x x^{n} y y^{n}$.

Problem 4

Let X be a set and let $\mathcal{P}(X)$ denote the power set of X, i. e. the set of all subsets of X. For $S, T \in \mathcal{P}(X)$, define

$$
S+T=(S \cup T)-(S \cap T) \quad \text { and } \quad S \cdot T=S \cap T .
$$

1. Show that this defines a unital ring structure on $\mathcal{P}(X)$. State explicitly what the zero element, the unity, and the negative of an element is. (3 points)
2. Denote by $F(X, \mathbf{Z} / 2 \mathbf{Z})$ the ring of functions from X to $\mathbf{Z} / 2 \mathbf{Z}$, where addition and multiplication are defined by $(f+g)(x)=f(x)+g(x)$ and $(f \cdot g)(x)=f(x) g(x)$. Show that $\mathcal{P}(X)$ and $F(X, \mathbf{Z} / 2 \mathbf{Z})$ are isomorphic rings. (3 points)

Solution:

The zero element is \varnothing (because $\varnothing+S=S$), the unity is X (because $X \cap S=S$), and both operations are commutative by definition. An additive inverse is given by $-X:=X$ since

$$
S+S=(S \cup S)-(S \cap S)=S-S=\varnothing .
$$

Multiplication is clearly associative, but associativity for addition has to be checked. Note that $x \in S+T$ iff x is either in S or in T, but not in both. So $x \in(S+T)+U$ if x is either in U or in $S+T$, which means x is in either one or three of the sets S, T, U, which is therefore seen to be the same condition as for $S+(T+U)$.

For distributivity, an element x is in $S \cdot(T+U)$ iff it is in S and exactly one of T and U, which is the same as being in exactly one of $S \cap T$ and $S \cap U$.

An isomorphism $\phi: \mathcal{P}(X) \rightarrow F(X, \mathbf{Z} / 2 \mathbf{Z})$ is given by

$$
\phi(S)(x)= \begin{cases}1 ; & x \in S \\ 0 ; & x \notin S\end{cases}
$$

An inverse map is given by

$$
\psi(f)=\{x \in X \mid f(x)=1\} .
$$

The maps are clearly inverses of each other; we have to check that they are in fact ring maps. For this, we compute

$$
\begin{aligned}
& \phi(S+T)(x)=\left\{\begin{array}{ll}
1 ; & x \in S \text { or } x \in T \text { but not both } \\
0 ; & \text { otherwise }
\end{array}=\phi(S)(x)+\phi(T)(x) \in \mathbf{Z} / 2 \mathbf{Z} ;\right. \\
& \phi(X)(x)=1 \text { for all } x \text {; and } \\
& \phi(S \cdot T)(x)=\left\{\begin{array}{ll}
1 ; & x \in S \text { and } x \in T \\
0 ; & \text { otherwise }
\end{array}=\phi(S)(x) \cdot \phi(T)(x) \in \mathbf{Z} / 2 \mathbf{Z} ;\right.
\end{aligned}
$$

Problem 5

Show that for every $n \in \mathbf{N}$ there exists an irreducible polynomial of degree n over \mathbf{Q}. When using a theorem from this class, write down its full statement. (6 points)

Solution:

We use Gauss's lemma and the Eisenstein criterion to see that $x^{n}+p$ is irreducible over \mathbf{Z}, and hence over \mathbf{Q}, for any n and any prime p. (For the statements, consult the textbook.)

Problem 6

Let A be a finitely generated abelian group. For every prime number p, the module $A / p A$ is a vector space over $\mathbf{Z} / p \mathbf{Z}$; denote by n_{p} its dimension.

1. Show that if A is torsion then $n_{p}=0$ for all but finitely many p. (3 points)
2. Show that if all n_{p} are the same then A is a free abelian group. (3 points)

Solution:

If A is torsion then by the structure theorem,

$$
A \cong A_{p_{1}} \oplus \cdots \oplus A_{p_{n}}
$$

where p_{i} are distinct primes and $A_{p_{i}}$ are abelian p_{i}-groups. Thus $A / p A \cong A_{p_{i}} / p_{i} A_{p_{i}}$ if $p=p_{i}$ and zero otherwise. So there are only finitely many p such that $A / p A \neq 0$.

For the second part, we know, again by the structure theorem, that

$$
A \cong \mathbf{Z}^{n} \oplus A_{p_{1}} \oplus \cdots \oplus A_{p_{n}},
$$

where the $A_{p_{i}}$ are as before. Assume all the n_{p} are the same. Then $n_{p}=n$ because we can choose p to be a prime outside $\left\{p_{1}, \ldots, p_{m}\right\}$. But then, choosing $p=p_{i}$, we see that $A_{p_{i}}=0$ for all i. Thus $A \cong \mathbf{Z}^{n}$.

