SF2729 Groups and Rings Problem set 11

due: Friday February 27 in class.

Write clear, clean, brief, and complete solutions and use whole sentences. Solutions without proper reasoning score worse. You can submit hand-written or typed solutions and turn them in in class or send them by email to wojtek@kth.se. I will not accept late homework except under extraordinary circumstances that you need to discuss with me before the deadline.

Problem 1. Let p be a prime number with $p=1(\bmod 4)$. Recall that this implies existence of a and b in \mathbb{Z} such that $p=a^{2}+b^{2}$ (as we shown during the last exercises). Prove that a and b are unique up to order and signs.
Problem 2. Let R be an integral domain and $p(x)=a_{n} x^{n}++a_{1} x+a_{0}$ be an irreducible polynomial in $R[x]$. Show that then also the polynomial $q(x)=a_{0} x^{n}+$ $+a_{n-1} x+a_{n}$ is irreducible.

Problem 3. Show that the rings $\mathbb{Z}[i] / 29$ and $(\mathbb{Z}[i] /(2+5 i)) \times(\mathbb{Z}[i] /(2-5 i))$ are isomorphic. Tip: Chinese Remainder theorem.

