SF2729 Groups and Rings Problem set 11

due: Friday February 27 in class.

Write clear, clean, brief, and complete solutions and use whole sentences. Solutions without proper reasoning score worse. You can submit hand-written or typed solutions and turn them in in class or send them by email to wojtek@kth.se. I will not accept late homework except under extraordinary circumstances that you need to discuss with me before the deadline.

Problem 1. Let p be a prime number with $p = 1 \pmod{4}$. Recall that this implies existence of a and b in \mathbb{Z} such that $p = a^2 + b^2$ (as we shown during the last exercises). Prove that a and b are unique up to order and signs.

Problem 2. Let *R* be an integral domain and $p(x) = a_n x^n + a_1 x + a_0$ be an irreducible polynomial in R[x]. Show that then also the polynomial $q(x) = a_0 x^n + a_{n-1}x + a_n$ is irreducible.

Problem 3. Show that the rings $\mathbb{Z}[i]/29$ and $(\mathbb{Z}[i]/(2+5i)) \times (\mathbb{Z}[i]/(2-5i))$ are isomorphic. Tip: Chinese Remainder theorem.