SF2729 Groups and Rings Problem set 2

due: Thursday Nov 20 in class.

Write clear, clean, brief, and complete solutions and use whole sentences. Solutions without proper reasoning score worse. You can submit hand-written or typed solutions and turn them in in class or send them by email to tilmanb@kth. se. I will not accept late homework except under extraordinary circumstances that you need to discuss with me before the deadline.

Problem 1. Consider the symmetric group S_{8} of permutations of $\{1, \ldots, 8\}$.
(1) Compute the product $\sigma=(14286)(352)(1784)(34)$ in cycle notation. (Remember that we apply cycles from right to left.)
(2) What is the order of σ ?
(3) Is there an element in S_{8} which has a larger order than σ ?

Problem 2. Let G be the set of all real 2×2-matrices of the form $\left(\begin{array}{ll}a & b \\ b & a\end{array}\right)$ with $a \neq \pm b$.
(1) Show that G is an abelian group under matrix multiplication.
(2) Show that if $A \in G$ has finite order, then it has order 1 or 2. (Hint: all elements of G are diagonalizable.)
Problem 3. Compute the order $|G| \in \mathbf{N} \cup\{\infty\}$ of the group G with the presentation

$$
G=\left\langle x, y \mid x^{2} y=1, x y^{3}=1\right\rangle
$$

