SF2729 Groups and Rings Problem set 8

due: Friday February 6 in class.

Write clear, clean, brief, and complete solutions and use whole sentences. Solutions without proper reasoning score worse. You can submit hand-written or typed solutions and turn them in in class or send them by email to wojtek@kth.se. I will not accept late homework except under extraordinary circumstances that you need to discuss with me before the deadline.

Problem 1. Denote by *R* the set of all polynomials in $f(x) \in \mathbb{Q}[x]$ with the property that $f(n) \in \mathbb{Z}$ for all $n \in \mathbb{Z}$. Show that *R* is a unital subring of $\mathbb{Q}[x]$ and give an example of a polynomial in *R* which is not in $\mathbb{Z}[x] \subset \mathbb{Q}[x]$.

Problem 2. Let *R* be a commutative ring with 1. Let *I* be the ideal in R[X] generated by $X^2 - 1$. Show that the group ring $R[\mathbb{Z}/2]$ and the quotient ring R[X]/I are isomorphic.

Problem 3. Given a homomorphism of commutative rings $f : R \to S$, show that:

- (1) If *I* is an ideal in *R*, then f(I) is an ideal in f(R) but not necessarily in all of *S*. (Give a counterexample for the latter statement.)
- (2) If J is an ideal in S, the $f^{-1}(J)$ is an ideal in R.