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Matematiska Institutionen
KTH

Exam to the course Discrete Mathematics, SF2736, January 14,
2015, 14.00-19.00.

Observe:

1. Nothing else than pencils, rubber, rulers and papers may be used.

2. Bonus marks from the homeworks will be added to the sum of marks on
part I. The maximum number of marks on part I is 15.

3. Grade limits: 13-14 points will give Fx; 15-17 points will give E; 18-21
points will give D; 22-27 points will give C; 28-31 points will give B; 32-36
points will give A.

4. Observe. All answers must be justified with a complete argumentation!!

Part I

1. (3p) Find the number of ways to distribute eleven identical yellow bal-
loons and eight identical red balloons to five children. The answer must
be given as an integer, or as a product of integers.

Solution. The number of ways to distribute n identical objects in k
labeled boxes is equal to (

n+ k − 1

k − 1

)
.

Hence, by multiplication principle, we get that the answer is given by(
11 + 4

4

)
·
(

8 + 4

4

)
=

11 · 10 · 9 · 8
1 · 2 · 3 · 4

· 8 · 7 · 6 · 5
1 · 2 · 3 · 4

that can be evaluated to

ANSWER: 330 · 70 = 23100.

2. (a) (1.5p) Find the greatest common divisor of the integers 518, 434
and 732.

Solution. The Euclidean algorithm gives

518 = 1 · 434 + 84, 434 = 5 · 84 + 14, 84 = 6 · 14

Hence gcd(518, 434) = 14. As 7 is not a divisor of 732 while 2 are
we get

ANSWER: 2.

(b) (1.5p) Find the least common multiple of the integers 518, 434
and 732.

Solution. We start by finding the pairwise greatest common divi-
sors of the given integers:

732 = 518+214, 518 = 2·214+90, 214 = 2·90+34, 90 = 3·34−12

and we can conclude that gcd(518, 732) = 2.

732 = 2 · 434− 136, 434 = 3 · 136 + 26, 136 = 5 · 26 + 6,
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from which we get that gcd(732, 434) = 2. Thus

732 = a · 2, 518 = b · 7 · 2, 434 = c · 7 · 2

where the integers a, b and c are pairwise coprime. Thus

lcm(732, 518, 434) = abc · 2 · 7 =
(a · 2)(b · 7 · 2)(c · 2 · 7)

7 · 2 · 2
.

Consequently

lcm(732, 518, 434) =
732 · 518 · 434

7 · 2 · 2
= 5877228.

ANSWER: 5877228.

3. (3p) Find and describe a 4-regular graph G without multiple edges and
loops such that G admits an Euler circuit but no Hamilton cycle.

(4-regular means that every vertex has degree 4. A loop is an edge the
endpoints of which is the same vertex.)

Solution. We consider the two graphs with vertex sets

E1 = {a, a1, . . . , a6}, E2 = {b, b1, . . . , b6},

and edges between xi and xi+1, and xi and xi+2 for x ∈ {a, b}, for
i = 1, 2, 3, 4, 5, 6, (index modulo 6) and with edges between x and x1 and
x6, for x ∈ {a, b}. Then identifying a with b, we get a 4-regular graph
with an Euler circuit, as all vertices have an even degree. There are no
cycles meeting all vertices, as the vertex a = b must be met twice then.

4. Let S6 denote the group of all permutations of the elements in the set
{1, 2, . . . , 6}. Let ϕ = (1 6 2 5)(4 5 2) and ψ = (1 5)(2 3) be two
elements of S6.

(a) (1p) Find a permutation γ in S6 such that ϕ2γ = ψ.

Solution. We start by writing ϕ as a product of disjoint cycles

ϕ = (1 6 2 5)(4 5 2) = (1 6 2 4).

Then
ϕ2 = (1 2)(6 4).

Finally

γ = (ϕ2)(−1)ψ = (1 2)(6 4)(1 5)(2 3) = (1 5 2 3)(4 6).

So

ANSWER: γ = (1 5 2 3)(4 6).

(b) (1p) Find two distinct permutations δ in S6 such that δ2 = ψ.

Solution. We know that

(a1 a2 a3 a4)(a1 a2 a3 a4) = (a1 a3)(a2 a4).

Thus, with

δ1 = (1 2 5 3) =⇒ δ21 = (1 5)(2 3)

We know that
(4 6)(4 6) = Id.
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which implies that with

δ2 = δ1(4 6)

we get δ22 = ψ.

Hence,

ANSWER: For instance δ = (1 2 5 3) or δ = (1 2 5 3)(4 6).

(c) (1p) Is there any permutation β in S6 such that β2 = ϕ.

Solution. We get that

ϕ = (1 6 2 4) = (1 4)(1 2)(1 6)

is an odd permutation. Thus the given equation cannot have any
solution as for any β, the permutation β2 is an even permutation.

5. (3p) Consider a regular polygon with 12 unlabeled edges. (The polygon
can be rotated and flipped.) Find the number of ways to color the edges
in q distinct colors.

Solution. We use the lemma of Burnside that tells that the number of
colorings is

1

|G|
∑
ϕ∈G
|Fix(ϕ)|.

With the edges labeled 1, 2, ..., 12, where i is a neighbor edge to i + 1,
we get the following table

ϕ ∈ G |Fix(ϕ)|
(1)(2) . . . (12) q12

ρ = (1 2 · · · 12) q
ρ2 = (1 3 · · · 11)(2 4 · · · 12) q2

ρ3 = (1 4 7 10)(2 5 8 11)(3 6 9 12) q3

ρ4 = (1 5; 9)(2 6 10)(3 7 10)(4 8 12) q4

ρ5 q
ρ6 q6

ρ7 q
ρ8 q4

ρ9 q3

ρ10 q2

ρ11 q
(1)(2 12)(3 11)(4 10)(5 9)(6 8)(7) q7

(1 12)(2 11)(3 10)(4 9)(5 8)(6 7) q6

dito q7

dito q6

dito q7

dito q6

dito q7

dito q6

dito q7

dito q6

dito q7

dito q6

Thus

ANSWER:

1

24
(q12 + 6q7 + 7q6 + 2q4 + 2q3 + 2q2 + 4q).
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Part II

6. The group G = (Z23 \ {0}, ·) is a cyclic group.

(a) (1p) Show that the element 5 generates G.

Solution. The size of G is |G| = 22. Thus the order σ(5) of 5
divides 22, that is,

σ(5) ∈ {1, 2, 11, 22}.

We note that

52 = 2 6= 1, 511 = (52)55 = 255 = 9 · 5 = −1 6= 1.

The only possibility for the order of 5 is that σ(5) = 22. This fact
implies that 5 generates G.

(b) (2p) Find another element of G that generates G.

Solution. We consider the element g = 53. Then, as order of 5
is 22,

g2 = (53)2 = 56 6= 1, g11 = (53)11 = 522511 = −1 6= 1,

Consequently σ(g) 6∈ {1, 2, 11} so σ(g) = 22. Thus g generates G.

ANSWER: For example, 53, that is, 10.

7. (4p) Find the number of equivalence relations R on a set M = {1, . . . , 9}
such that |R| = 27 and

|{x ∈M | 1Rx}| = |{x ∈M | 2Rx}| = |{x ∈M | 3Rx}| = 3.

Solution. We consider distinct cases depending on whether or not 1 ∼ 2,
1 ∼ 3 or 2 ∼ 3, respectively.

Case 1. None of 1, 2 or 3 are equivalent. We know that each of the sets
above are equivalence classes that are either disjoint or equal. Thus, in
this case

{x ∈M | 1Rx} ∪ {x ∈M | 2Rx} ∪ {x ∈M | 3Rx} = {1 . . . , 9}.

AsR is an equivalence relation we know that for any equivalence class Ca,

x, y ∈ Ca ⇐⇒ x ∼ y.

Thus every equivalence class of size k contributes with k2 elements (x, y)
to R. So in this case R has size 32 + 32 + 32 = 27.

An equivalence relation is defined by its equivalence classes. These are in
this case three labeled sets, with one element already destinated to the
equivalence class. Thus the number of equivalence relations in this case
is (

6

2, 2, 2

)
=

6!

2 · 2 · 2
=

720

8
= 90.

Case 2. 1 ∼ 2 but 1 is not equivalent to 3. In this case six of the elements
are distributed to C1 = C2 and C3, each contributing with 9 elements to
R. Remains three elements to be distributed to equivalence classes such
that these equivalence classes contributes with 27 − 2 · 9 elements to R.
The only possibility is that they constitute an equivalence class of their
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own. With arguments as above we get that the number of equivalence
classes in this case is(

6

1, 2, 3

)
=

6!

1 · 2 · 3
=

720

12
= 60.

Case 3. 1 ∼ 3 but 1 is not equivalent to 2. As above we get 60 distinct
equivalence relations.

Case 4. 3 ∼ 2 but 1 is not equivalent to 3. As above we get 60 distinct
equivalence relations.

Case 5. 1 ∼ 2 ∼ 3. The remaining six elements {4, . . . , 6} shall be par-
titioned into equivalence classes such that the sum of contributions from
these equivalence classes to R is 27− 9 = 18. There are two possibilities
three equivalence classes of size 4, 1 and 1, respectively, or two equiva-
lence classes both of size 3. The number of possibilities in this case are
thus (

6

4

)
+

1

2

(
6

3, 3

)
= 15 + 10 = 25.

We sum over all possibilities and get the

ANSWER: 90 + 3 · 60 + 35 = 295.

8. (4p) Let G be a graph with vertex set V and edge set E, with no multiple
edges and no loops (a loop is an edge the endpoints of which is one
single vertex). Assume that the lengths of the cycles belong to the set
{8, 10, 12, 14} and that

{δ(v) | v ∈ V } = {9, 11, 13, 15, 17},

where δ(v) denotes the valency (degree) of the vertex v. Show that, for
every integer q in the interval 19 ≤ q ≤ 72, the edges can be colored in
exactly q distinct colors such that no two edges of the same color meet
at a vertex. (The number of possibilities for q can certainly be proved to
be larger than this interval, but to get 4p it is enough to verify the given
interval of possibilities.)

Solution. As all cycles have an even length, we get from a known the-
orem that the graph is bipartite with vertex set X ∪ Y with no edges
between vertices in X and no edges between vertices in Y . As the max-
degree is 17 there is, by another known theorem, an edge coloring in 17
distinct colors c1, . . . , c17. If we can prove that the graph has at least 72
edges, we can take away 17 edges colored in the colors c1, . . . , c17 and give
q−17 of the remaining edges the q−17 distinct (new) colors d1, . . . , dq−17,
where

{c1, . . . , c17} ∩ {d1, . . . , dq−17} = ∅.

We now prove that fact. One of the vertices v has degree 17. Assume
that v belongs to the set of edges X. Then all neighbors of v belong to
Y and thus |Y | ≥ 17. All vertices of Y has a degree larger than 8. Thus
the number of edges is at least equal to 17 · 9 = 153.
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Part III

9. Let as usual Sn denote the group consisting of all permutations of the
elements in the set {1, 2, . . . , n}.

(a) (1p) Does an equation ψ2 = ϕ have a solution ψ for any even per-
mutation ϕ.

Solution. No. Every permutation ψ can be expressed as a product
of disjoint cycles:

ψ = c1c2 · · · ck,

and for disjoint cycles

ψ2 = c21c
2
2 · · · c2k.

The square of a cycle ci of an odd length is a cycle of the same
length, the square of an cycle of an even length is a product of two
cycles of half length:

(a1a2 . . . a2k+1)(a1a2 . . . a2k+1) = (a1a3 . . . a2k+1a2a4 . . . a2k)
(a1a2 . . . a2k)(a1a2 . . . a2k) = (a1a3 . . . a2k−1)(a2a4 . . . a2k)

(1)

The permutation
ϕ = (1 2)(3 4 5 6)

is an even permutation, as ϕ is a product of an even number of
2-cycles:

ϕ = (1 2)(3 6)(3 5)(3 4).

and, from Equation (1) we get that no permutation ψ can satisfy
the equation ψ2 = ϕ as ϕ is expressed as just two disjoint cycles
which are of distinct lengths.

(b) (1p) Derive a formula for the number of solutions ψ in Sn to the
equation ψ4 = Id.?

Solution. With
ψ = c1c2 · · · ck,

as a product of disjoint cycles we have

ψ4 = c41c
4
2 · · · c4k.

If c4i = Id. then the length of the cycle ci is either 1, 2 or 4. Thus
we shall sum over all possibilities to split the set {1, 2, . . . , n} into
mutually disjoint unlabeled subsets of size 1, 2 and 4. Note that
for a given subset {a1, a2, a3, a4} there are 6 possibilities to form a
4-cycle:

(a1 a2 a3 a4), (a1 a2 a4 a3), . . . , (a1 a4 a3 a2).

Thus we get the formula∑ 6i

i!j!k!

(
n

4, . . . 4, 2 . . . 2, 1 . . . 1

)
where in the multinomial coefficient the number of 4:s is equal to
i, the number of 2:s is equal to j and the number of 1:s is equal
to k, and the summation is over all non-negative integers such that
4i+ 2j + k = n.
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(c) (3p) Can the number of solutions ψ in Sn to an equation ψ2 = ϕ,
where ϕ 6= Id., be larger than the number of solutions in Sn to the
equation ψ2 = Id..

Solution. Consider ϕ as a product of disjoint cycles:

ϕ = d1d2 · · · dk.

From Equation (1) we get that a solution ψ to ψ2 = ϕ can be
obtained by combining pairs of two cycles of the same length to
cycles of double length, or for a cycle d of odd length obtain, using
Equation (1), one cycle of the same length, the square of which is
equal to d. Thus the number of solutions ψ to the equation ψ2 = ϕ
is less than the number of ways Nk to find a partition of the set
{1, 2, . . . , k} (the index set of cycles of ϕ) into unlabeled sets of size
2 or 1. Trivially Nk is an strictly increasing function in k, that is,

k < n =⇒ Nk < Nn.

Similarly to the solution of previous subproblem, we get that the
number of solutions to ψ2 = Id. is equal to Nn. If ϕ 6= Id. we have
that k < n. Thus the answer is

ANSWER: No

10. (5p) Evaluate the new idea below for the construction of an 1-error-
correcting binary code C. Discuss whether the construction is fruitful,
give its advantages and disadvantages in comparison with the traditional
Hamming construction of 1-error-correcting codes.

Idea. Use a binary k × n-matrix H and two distinct k × 1-matrices b1

and b2 to define a code C by

C = {c = (c1 . . . cn) | HcT = b1} ∪ {c = (c1 . . . cn) | HcT = b2}.

Also discuss further possible generalizations of this construction.

Solution. We first show that, under some circumstances, the construc-
tion produces a 1-error-correcting code. Let

b = b2 − b1,

and let L be a subgroup of Zk
2 not containing the element b. Use the

non-zero elements of L as columns in H. Then n = |L| − 1, so the length
of the code is n = |L| − 1. Let, for i = 1, 2,

Ci = {c = (c1 . . . cn) | HcT = bi}.

We now prove that the minimum distance in C1 and C2 is three. Assume
c ∈ Ci. Changing one coordinate position in c, the position i, to the
word c′ will give

Hc′T = b1 + ki,

where ki is the i:th column of H, which is neither equal to b1 nor b2 as
ki neither is equal to 0 nor b. Similar arguments show that the distance
between words of C1 and C2 is at least equal to three. Thus the code
obtained in this way is 1-error-correcting.

For the purpose of evaluating the construction we start by calculating the
number of words of the code C. Let ci be a word such that HcTi = bi,
for i = 1, 2. Then Ci is the coset

Ci = ci + {c | HcT = 0}.
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Thus
|Ci| = |{c̄ | HcT = 0}| = 2n−k = 2|L|−1−k.

As L is a non-trivial subgroup of Zk
2 , the maximum size of L is

|L| ≤ 2k−1.

Thus the maximum size of the code is

|C1 ∪ C2| ≤ 2 · 2n−k = 2 · 22
k−1−1−k = 22

k−1−1−(k−1)

which is he number of words of an ordinary Hamming code of length
m = 2k−1 − 1.

An disadvantage with this construction is the error-correcting procedure.
In the traditional Hamming construction you multiply the received word
with H. The column k so obtained indicates the position where the error
occurred. With the new construction you must check which column in H
is equal to one of the columns k− b1 or k− b2.

A possible advantage could be if we obtained a new code. However the
new code is just a coset of a linear code. To see this assume that b1 = 0.
Then C1 is, as being a null space of a matrix, a linear code. Furthermore,
if c and c′ are two elements of C2, that is,

HcT = b, Hc′T = b,

then
H(cT + c′T ) = b + b = 0

Thus c+c′ belongs to C1, which implies that C = C1∪C2 is linear. Now
let b1 be any word and let d̄ be a word such that

HdT = b1.

Then, for c in the above defined code C

H(d + c)T = bi

depending on whether c̄ belongs to C1 or C2.

A generalization could be to let C be a suitable union

t⋃
i=1

({c = (c1 . . . cn) | HcT = bi}).

With suitable sets of columns of H, the non-zero elements of a subgroup
L of Zk

2 , we will, with the same arguments as above, obtain an 1-error-
correcting code by considering a partition of Zk

2 into cosets of L. The
error-correcting procedure will be even worse than for the original idea
for a new construction of 1-error-correcting code.


