Problem session December 18, SF2736, fall 14.

Please prepare!

- 1. Show that there is no graph with the following sequence of degrees 2, 3, 3, 3, 3, 4, 5 of its vertices.
- 2. Are the following two graphs isomorphic?

a	b	$^{\mathrm{c}}$	d	e	f	respectively	1	2	3	4	5	6	
b	a	a	a	b	c		2	1	2	3	2	1	
\mathbf{c}	\mathbf{c}	b	e	d	d		4	3	4	5	4	3	
d	e	f	f	f	e		6	5	6	1	6	5	

- 3. An acyclic graph has 124 vertices and 98 edges. Find the number of components.
- 4. Show that a graph with n vertices, such that the sum of the degrees of any to vertices is at least equal to n-1, must be connected.
- 5. Find the maximum number of vertices of in a graph with 28 edges if the degree (valency) of every vertex is at least 3.
- 6. Find orderings of the vertices of the cube for which the greedy algorithm requires 2, 3 and 4 colors respectively, for a coloring where adjacent vertices have distinct colors.
- 7. Find a complete matching in the bipartite graph on the set of vertices $X = \{a_1, a_2, \ldots, a_5\}$ and $Y = \{b_1, b_2, b_3, \ldots, b_5\}$ and edges $\{(a_1, b_2), (a_1, b_3), (a_2, b_1), (a_2, b_2), (a_2, b_4), (a_3, b_3), (a_3, b_5), (a_4, b_1), (a_4, b_2), (a_4, b_4), (a_5, b_3)\}.$
- 8. A network and a flow is defined as above

- (a) What is the value of f?
- (b) Find an f-augmenting path and compute the value of the augmented flow.
- (c) Find a cut with capacity 12.
- 9. Suppose that every boy in a school has a list of k girls he can date and suppose that every girl appears on k such lists. Show that every boy can find a girl to date.
- 10. Show that for every bipartite graph with n vertices it is true that $e \leq (\frac{n}{2})^2$.
- 11. Find the number of regular 4-valent graphs with seven vertices.
- 12. Show that if a graph G is not connected then the complement \bar{G} of the graph must be connected.
- 13. Show that if \bar{G} is the complement of the graph G then $\chi(G)\chi(\bar{G}) \geq n$ where n is the number of vertices of G.