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Matematiska Institutionen
KTH

Exam to the course Discrete Mathematics, SF2736, April 9, 2015,
08.00-13.00.

Observe:

1. Nothing else than pencils, rubber, rulers and papers may be used.

2. Bonus marks from the homeworks will be added to the sum of marks on
part I. The maximum number of marks on part I is 15.

3. Grade limits: 13-14 points will give Fx; 15-17 points will give E; 18-21
points will give D; 22-27 points will give C; 28-31 points will give B; 32-36
points will give A.

4. Observe. All answers must be justified with a complete argumentation!!

Part I

1. (a) (1p) Find 535176(mod 89).

Solution. As 89 is a prime number, and 89 does not divide 535, we
can use a theorem of Fermat and get

535176 ≡89 (53588)2 ≡89 12 ≡89 1.

(Or why not use the fact that 535 ≡ 1(mod 89).)

Thus

ANSWER: 1.

(b) (2p) Solve in the ring Z53 the matrix equation(
10 12
13 14

)(
x
y

)
=

(
1
0

)

Solution.{
10x + 12y = 1
13x + 14y = 0

∼
{

10x + 12y = 1
3x + 2y = −1

∼

{
−8x + = 7

3x + 2y = −1

We need to find the inverse of 8 in the ring Z53:

53 = 7 · 8− 3, 8 = 3 · 3− 1

which gives that

1 = 3 · 3− 8 = 3(7 · 8− 53)− 8 = 20 · 8− 3 · 53.

Thus
x = −20 · 7 = 19.

We then get
2y = −1− 3 · 19 = −5

ANSWER: x = 19 and y = 48.
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2. (3p) In how many ways can 10 boys and 13 girls be placed in a row in
such a way that no two boys are adjacent.

Solution. We first place the girls in a row, which can be done in 13!
distinct ways. Then we choose where to place the boys, there are 14
distinct positions between, in front or at the rear of the row of girls for
the 10 boys, and placing the boys can then be performed in 10! distinct
ways. Thus in total

13!

(
14

10

)
10!.

ANSWER: 13!14!/4!.

3. Let G denote the group which is the direct product G = (Z4,+)×(Z6,+).

(a) (1p) Find and describe a cyclic subgroup H to G of size |H| = 12.

Solution. The group (Z6,+) has a subgroup of size 3, the set of
elements K = {0, 2, 4}. The set (Z4,+) ×K constitute a subgroup
of size 12.

(b) (1p) Is there any cyclic subgroup K to G of size |K| = 8.

Solution. No.

(c) (1p) Find the number of subgroups to G of size 2.

Solution. A subgroup of size 2 is cyclic and generated by an element
of order 2. We enumerate the elements of order 2:

(2, 0), (0, 3), (2, 3).

Thus

ANSWER: 3.

4. (3p) Solve, by using the technique with generating functions, the recur-
sion

an = an−1 + 12an−2, n = 2, 3, . . .

where a0 = 2 and a1 = 1

Solution. Let

A(t)

∞∑
n=0

ant
t.

We multiply the recursion with tn, and sum for n = 2, 3, . . .:

∞∑
n=2

ant
n =

∞∑
n=2

an−1t
n + 12

∞∑
n=2

an−2t
n

and thus
A(t)− a1t− a0 = t(A(t)− a0) + 12t2A(t).

Hence
(1− t− 12t2)A(t) = t+ 2− 2t

We get

A(t) =
t− 1

1− t− 12t2
=

2− t
(1− 4t)(1 + 3t)

=
C

1− 4t
+

D

1 + 3t
.
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Simple calculations gives C = 1 and D = 1. Consequently,

A(t) =
1

1− 4t
+

1

1 + 3t
=

∞∑
n=0

(4t)n +

∞∑
n=0

(−3t)n =

∞∑
n=0

(4n + (−3)n)tn.

ANSWER: an = 4n + (−3)n

5. (a) (1p) Is there any connected graph G, without multiple edges and
loops, with 11 vertices of the degrees (valencies) 1, 2, 3, 4, ..., 11,
respectively.

Solution. No, as the number of vertices is 11, the number of neigh-
bors of a vertex is at most 10. Thus no vertex can have degree 10.

(b) (2p) Find the minimum number of edges that must be deleted in
the complete graph Kn so that the graph that remains will not be
connected.

Solution. When the minimum number of edges is deleted, two
components will remain, that both are complete graphs, the graphs
Kx and Ky, where x+ y = n. The number edges deleted is then the
maximum number of edges in a bipartite graph vertex sets X and
Y with x and y = n− x vertices, respectively, that is the number of
edges in the complete bipartite graph Kx,n−x, which is

f(x) = x(n− x), 1 ≤ x ≤ n− 1.

The minimum value n − 1 of this function occurs when x = 1, and
x = n− 1.

ANSWER: n− 1.

Part II

6. (a) (1p) Give a formula for the number of words with n letters of which
m are identical and the remaining letters distinct.

Solution. First choose the places for the m identical letters, which
can be done in (

n

m

)
=

n!

m!(n−m)!

ways. Then order the remaining n − m letters for the remaining
places, which can be done in

(n−m)!

ways. Thus we get

ANSWER:
n!

m!

(b) (2p) Prove the identity.

k∑
i=0

(
n+ i

i

)
=

(
n+ k + 1

k

)
.
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Solution. Proof by induktion. It is true that

1∑
i=0

(
n+ i

i

)
=

(
n

0

)
+

(
n+ 1

1

)
= 1 + (n+ 1) =

(
n+ 2

1

)
.

The induction step is as follows

k∑
i=0

(
n+ i

i

)
+

(
n+ (k + 1)

k + 1

)
=

(
n+ k + 1

k

)
+

(
n+ (k + 1)

k + 1

)
=

=

(
n+ (k + 1) + 1

k + 1

)
.

This completes the proof for the cases k = 1, 2, . . .. The case k = 0
is trivial.

7. (4p) Find the minimum and maximum number of edges in a bipartite
graph with 53 vertices admitting an Euler circuit.

Solution. We first consider the maximum number. Consider the com-
plete bipartite graph Kn,53−n, where, with standard notation, |X| = n
and |Y | = 53 − n. Without loss of generality we may assume that n
is an odd number. The graph is connected and the number of edges is
n(53 − n). As the vertices in the Y -set has the odd degree n, we can-
not obtain an Euler circuit unless we delete at least one edge from each
Y -vertex, that is deleting at least 53− n edges. It remains

f(n) = (n− 1)(53− n)

edges. As, with m = n− 1

f(n) = g(m) = m(52−m),

its maximum value appears when m = 26, that is n = 27.

We now show that such a bipartit graph exists. Again consider K27,26

with
X = {x1, . . . , x27}, Y = {y1, . . . , y26}.

If we delete the edges

xky2k−1, xky2k, k = 1, 2, . . . , 13,

then all vertices have an even degree, and the graph is connected, as all
Y -vertices are neighbors of x27, and every X-vertice is a neighbor to at
least one Y -vertex.

Now to the minimum number. All cycles in a bipartite graph has an even
length, thus an Euler circuit in a bipartite graph on 53 vertices must have
at least 54 edges. We now define such a bipartite graph. Simply take a
cycle with 50 vertices

v1v2 . . . v50v1

and a cycle
v50v51v52v53v50,

together these cycles constitute an Euler circuit. This graph has 54 edges,
all cycles have an even length, and thus the graph is bipartite.
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8. (4p) Let G denote group of (multiplicatively) invertible elements in the
ring Z32. For which integers n is there a group of permutations Sn of
the elements in the set {1, 2, . . . , n} such that Sn contains a subgroup
isomorphic with G.

Solution. The invertible elements in Z32 are

G = {1, 3, 5, 7, . . . , 31}

so the size of G is |G| = 16. We investigate this group, according to the
order of its elements. The order of 3 divides 16, so we check 3d where d
divides 16:

32 = 9 6= 1, 34 = 17, 38 = 1.

Hence 3 generates a subgroup H of size 8:

H = 〈3〉 = {3, 9, 27, 17, 19, 25, 11, 1}

The element −1 has order 2, and generates a subgroup K:

K = 〈−1〉 = {−1, 1}.

As easily seen every element g ∈ G can be written

g = hk = kh

for unique elements h ∈ H and k ∈ K, as

G = 〈3〉 = {±3,±9,±27,±17,±19,±25,±11,±1}.

We can conclude that Sn must contain two disjoint cyclic subgroups of
order 8 and 2, respectively. For n ≥ 10 this is true, and indeed, the
subgroup of Sn generated by the permutations

γ = (1 2 3 4 5 6 7 8), ψ = (9 10)

is isomorphic to G, by the isomorphism

ϕ(3d(−1)e) = γdψe.

ANSWER: For n ≥ 10.

Part III

9. LetD be the smallest linear code containing the words 11111111, 10011001
and 11100001.

(a) (1p) Show that D is a 1-error-correcting code.

Solution. The code contains all possible linear combinations of the
three given words, which is the set

D = {11111111, 10011001, 11100001, 01100110, 00011110,

01111000, 11100001, 10000111}

As the code is linear, its minimum distance is equal to the minimum
non-zero weight, which is 4. As minimum distance is greater than
3, the code is 1-error-correcting.
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(b) (2p) Find two distinct 1-error-correcting codes C1 and C2 distinct
from D and containing D. (1p for each such code.)

Solution. We add another generator to the given set of four gener-
ators, so

C1 = span{11111111, 10011001, 11100001, 01010101},

and

C2 = span{11111111, 10011001, 11100001, 01010011},

are 1-error-correcting codes. Indeed their parity-check matrices are

H1 =


1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 0
0 1 1 0 0 1 1 0
1 0 1 0 1 0 1 0

 , H2 =


1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 0
0 1 1 0 0 1 1 0
1 0 1 0 1 1 0 0

 ,
respectively. As the columns are distinct, the codes are 1-error-
correcting, the words 01010101 ∈ C1 and 01010011 ∈ C2 are at
distance 2 and can thus not belong tothe same 1-error-correcting
code. Hence, C1 6= C2.

(c) (3p) Give a non-trivial upper bound for the number of linear 1-error-
correcting codes C that contain D.

Solution. As the length of a 1-error-correcting code C containing
D is 8, the packing condition gives that

|C| ≤ 28

1 +
(
8
1

) < 29,

and as the number of words in a linear 1-error-correcting code is a
power of two (and as |D| = 8), we may conclude that |C| = 16.
Furthermore we note that

C = D ∪ {c̄+D},

for some code word c̄ ∈ C (compare the solution of previous sub-
problem). The number of cosets to D in Z8

2 is, including D, equal to
28/|D| = 32. A trivial bound for the number of 1-error-correcting
codes containing C would be 32. To get a non-trivial bound we ex-
clude cosets c̄+D containing words at distance less than 3 to words
of D. A non-trivial bound is thus given by excluding the cosets

ēi + C,

where ēi is a word of weight 1 with its single non-zero element in
position i. As minimum distance in D is four, no two such words
belong to the same coset. Thus at least 8 cosets will not produce,
together with D, a 1-error-correcting code. Thus a non-trivial upper
bound would, for the number of 1-error-correcting codes C contain-
ing D, be 32− 8, that is 24. (Indeed, the true value is far from this
value, but not a necessity to achieve for getting three marks on this
subproblem).

10. (4p) Is the set of all equivalence relations on the set of positive integers an
uncountable or a countable infinite set? Justify your answer with good
motivations.
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Solution. The set of all equivalence relations on the set of positive in-
tegers is uncountable infinite. To verify this we consider the subset E of
all such equivalence relations that partitions the set of positive integers
into two equivalence classes, C1 and C2. As the number family of subsets
of the set of positive integers is uncountable infinite the result follows.
Indeed, there is an uncountable infinite set possibilities for C1 and C2,
respectively. However, concerned with equivalence classes, they are not
labeled, thus, every equivalence relation will be counted twice. Never-
theless, the half of an infinite uncountable set is itself uncountable and
infinite.


