Matematiska Institutionen
KTH

Solution of problem 8 b of a typical exam to the course Discrete Mathematics, SF2736, fall 14.

8. (3p) Consider any group G. Is it true in general that if $a+H$ and $b+K$ are cosets to subgroups H and K of G then the number of elements in $(a+H) \cap(b+K)$ either are equal to zero or divides the number of element of G, i.e., is it in general true that

$$
|(a+H) \cap(b+K)|=m \quad \text { and } \quad|G|=n \quad \Longrightarrow \quad m=0 \quad \text { or } \quad m \mid n .
$$

Solution. Yes it is true. To prove that, we first note that $H \cap K$ is a subgroup of H, which is a subgroup of G. Thus, by the theorem of Lagrange, $|H \cap G|$ divides $|H|$, that divides $|G|$. It thus suffices to show that

$$
|(a+H) \cap(b+K)|=|H \cap K|,
$$

if $(a+H) \cap(b+K) \neq \emptyset$
Assume that $x \in(a+H) \cap(b+K)$. Then, for some $h \in H$ and $k \in K$

$$
x=a+h=b+k,
$$

and, for every $g \in H \cap K$,

$$
x+g=a+h+g=b+k+g=a+h^{\prime}=b+k^{\prime} \in(a+H) \cap(b+K)
$$

(where $h^{\prime}=h+g \in H$ and $k^{\prime}=k+g \in K$). This shows that

$$
x+(H \cap K) \subseteq(a+H) \cap(b+K)
$$

Assume that $x^{\prime \prime}=a+h^{\prime \prime}=b+k^{\prime \prime}$ is an element of $(a+H) \cap(b+K)$. Then

$$
x^{\prime \prime}-x=h^{\prime \prime}-h=k^{\prime \prime}-k=g^{\prime \prime} \in H \cap K
$$

which shows that $x^{\prime \prime}=x+g^{\prime \prime} \in x+(H \cap K)$. Hence,

$$
(a+H) \cap(b+K) \subseteq x+(H \cap K)
$$

We have thus verified that

$$
(a+H) \cap(b+K)=x+(H \cap K)
$$

i.e., that $(a+H) \cap(b+K)$ is a coset to $H \cap K$ and thus of the same size as $H \cap K$.

