Homological algebra and algebraic topology
Problem set 10

due: Monday Nov 23 in class.

Problem 1 (4pt). In the following diagram of abelian groups, suppose that the
rows are long exact, and the maps ,, are isomorphisms for all n.
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Prove that there is a long exact sequence
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Problem 2 (2pt). Use previous problem to prove that excision for relative homol-
ogy implies the Mayer - Vietoris axiom.

Problem 3 (2pt). In this problem you will fill in a key step in the proof of excision.
Consider a pair of chain complexes of abelian groups D, C C,. Suppose that
S: C, — O, is a chain map that satisfies the following conditions:
(1) S(D.) € D,, and both chain maps S: C, — C, and S,
induce isomorphisms on all homology groups.
(2) For every z € C,, there is an m such that S™(z) € D,,.
Prove that the map H,,(D,) — H,(C,) induced by the inclusion is an isomorphism
for all n.
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Problem 4 (2pt). Show that the inclusion of pairs
fo (D", 8"71) — (D", D"\ {0}),

induces an isomorphism on all relative homology groups. Show that, despite this,
f is not a homotopy equivalence of pairs.



