# Homological algebra and algebraic topology Problem set 11 

due: Monday Nov 30 in class.

Problem 1 (3pt). Let $\omega:\{0, \ldots, n\} \stackrel{\cong}{\rightrightarrows}\{0, \ldots, n\}$ be a permutation of $\{0, \ldots, n\}$. In class we associated with $w$ a map $f_{w}: \Delta^{n} \rightarrow \Delta^{n}$ defined by the formula

$$
f_{w}\left(t_{0}, \ldots, t_{n}\right)=t_{0} \bar{v}_{\omega(0)}+t_{1} \frac{\overline{v_{\omega(0)}}+\overline{v_{\omega(1)}}}{2}+\cdots+t_{n} \frac{\overline{v_{\omega(0)}}+\cdots+\overline{v_{\omega(n)}}}{n+1}
$$

For each permutation $\omega$ of $\{0,1,2, \ldots, n\}$ consider the subspace

$$
\Delta_{\omega}^{n}=\left\{\left(t_{0}, \ldots, t_{n}\right) \in \Delta^{n} \mid t_{\omega(0)} \geq t_{\omega(1)} \geq \cdots \geq t_{\omega(n)}\right\} \subset \Delta^{n}
$$

(1) Prove that $\Delta_{\omega}^{n}$ is the image of $f_{\omega}$, and $f_{\omega}$ defines a homeomorpism of $\Delta^{n}$ onto its image.
(2) prove that the formula

$$
S(\sigma)=\sum_{\omega} \operatorname{sign}(\omega) \sigma \circ f_{\omega}
$$

defines a chain map $S: C_{*}(X) \rightarrow C_{*}(X)$.

Problem $2(2 \mathrm{pt})$. Let $\Delta^{n}$ be a simplex obtained as the convex hull of $n+1$ points in a general position in $\mathbb{R}^{k}$, for some $k$. Let $\Delta_{\text {sd }}^{n}$ be a simplex in the barycentric subdivision of $\Delta^{n}$. Prove that $\operatorname{diam}\left(\Delta_{\mathrm{sd}}^{n}\right) \leq \frac{n}{n+1} \operatorname{diam}\left(\Delta^{n}\right)$. Here diam denotes diameter, with respect to the standard metric on $\mathbb{R}^{k}$.

Problem 3 (3pt). Prove the following
(1) $\mathrm{H}_{0}(X, A)$ is always free abelian.
(2) $\mathrm{H}_{0}(X, A)=\{0\}$ if and only if every path component of $X$ contains a point of $A$.
(3) $\mathrm{H}_{1}(X, A)=\{0\}$ if and only if the map $\mathrm{H}_{1}(A) \rightarrow \mathrm{H}_{1}(X)$ is surjective and every path component of $X$ contains at most one path component of $A$.

Problem 4 (2pt). Calculate $\mathrm{H}_{*}(X, A)$ when $X$ is $S^{2}$ or $S^{1} \times S^{1}$, and $A$ is a finite subset of $X$.

