Homological algebra and algebraic topology Problem set 11

due: Monday Nov 30 in class.

Problem 1 (3pt). Let $\omega : \{0, \ldots, n\} \xrightarrow{\cong} \{0, \ldots, n\}$ be a permutation of $\{0, \ldots, n\}$. In class we associated with w a map $f_w : \Delta^n \to \Delta^n$ defined by the formula

$$f_w(t_0,\ldots,t_n) = t_0 \overline{v}_{\omega(0)} + t_1 \frac{\overline{v_{\omega(0)}} + \overline{v_{\omega(1)}}}{2} + \cdots + t_n \frac{\overline{v_{\omega(0)}} + \cdots + \overline{v_{\omega(n)}}}{n+1}$$

For each permutation ω of $\{0, 1, 2, \dots, n\}$ consider the subspace

$$\Delta_{\omega}^{n} = \left\{ (t_0, \dots, t_n) \in \Delta^{n} \mid t_{\omega(0)} \ge t_{\omega(1)} \ge \dots \ge t_{\omega(n)} \right\} \subset \Delta^{n}.$$

- (1) Prove that Δ_{ω}^{n} is the image of f_{ω} , and f_{ω} defines a homeomorphism of Δ^{n} onto its image.
- (2) prove that the formula

$$S(\sigma) = \sum_{\omega} \operatorname{sign}(\omega) \, \sigma \circ f_{\omega}$$

defines a chain map $S: C_*(X) \to C_*(X)$.

Problem 2 (2pt). Let Δ^n be a simplex obtained as the convex hull of n + 1 points in a general position in \mathbb{R}^k , for some k. Let Δ^n_{sd} be a simplex in the barycentric subdivision of Δ^n . Prove that diam $(\Delta^n_{sd}) \leq \frac{n}{n+1} \operatorname{diam}(\Delta^n)$. Here diam denotes diameter, with respect to the standard metric on \mathbb{R}^k .

Problem 3 (3pt). Prove the following

- (1) $H_0(X, A)$ is always free abelian.
- (2) $H_0(X, A) = \{0\}$ if and only if every path component of *X* contains a point of *A*.
- (3) $H_1(X, A) = \{0\}$ if and only if the map $H_1(A) \to H_1(X)$ is surjective and every path component of *X* contains at most one path component of *A*.

Problem 4 (2pt). Calculate $H_*(X, A)$ when X is S^2 or $S^1 \times S^1$, and A is a finite subset of X.