Homological algebra and algebraic topology Problem set 12

due: Monday Dec 7 in class.

Problem 1 (3pt). Let *X* be a Hausdorff topological space, $x \in X$. The *local homology* of *X* at *x* is given by the relative homology groups $H_*(X, X \setminus \{x\})$.

- (1) Prove that for any open neighborhood U of x, $H_*(X, X \setminus \{x\})$ is isomorphic to $H_*(U, U \setminus \{*\})$. This explains the term "local".
- (2) Let $f: X \to X$ be a homeomorphism. Prove that for all $x \in X$, f induces an isomorphism from local homology at x to local homology at f(x).
- (3) Let D^n be the closed unit ball in \mathbb{R}^n . Calculate the local homology of D^n at interior and boundary points, and use it to prove that every homeomorphism of D^n preserves the boundary.

Problem 2 (3pt). The Klein bottle *K* is the two-dimensional surface defined as the quotient of the unit square $I \times I$ by the following relations: $(x, 0) \sim (x, 1)$ for all $0 \le x \le 1$, and $(0, y) \sim (1, 1 - y)$ for all $0 \le y \le 1$.

- (1) Show that *K* has a cell structure with one 0-cell, two 1-cells, and one 2-cell.
- (2) Write the cellular chain complex of *K*.
- (3) Use it to calculate the homology of *K*.

Problem 3 (2pt). Let *X* be the quotient of the sphere S^2 by the identification $x \sim -x$ for every *x* on the equator of S^2 . Calculate the homology of *X*.

Problem 4 (2pt). Show that if *X* is a CW complex, then $H_n(X^n)$ is free.