Homological algebra and algebraic topology Problem set 13

due: Monday Dec 14 in class.

Problem 1 (3+1pt). Let X be a topological space. Let d_i be the dimension of $H_i(X;\mathbb{Q})$, as a rational vector space. Define the Euler characteristic of X by the formula $\chi(X) = \sum_{i=0}^{\infty} (-1)^i d_i$, assuming only finitely many of the d_i s are non-zero.

- (1) Prove that if X is a finite CW-complex then $\chi(X) = \sum_{i=0}^{\infty} (-1)^i c_i$, where c_i is the number of *i*-dimensional cells of X. (You are allowed to quote a previous homework result if you wish).
- (2) Let *X* be a space, and suppose $X = X_1 \cup X_2$ is a decomposition for which Mayer-Vietoris exact sequence holds. Prove that $\chi(X) = \chi(X_1) + \chi(X_2) - \chi(X_2)$ $\chi(X_1 \cap X_2)$ (assuming that all these numbers are defined).
- (3) Let S₁, S₂ be two surfaces. Prove that χ(S₁#S₂) = χ(S₁) + χ(S₂) 2.
 (4) (extra credit) Prove that χ(X × Y) = χ(X)χ(Y).

Problem 2 (2pt). The *projective plane* $\mathbb{R}P^2$ is the quotient space of the unit disk by the relation that identifies antipodal points on the boundary.

- (1) Show that $\mathbb{R}P^2$ has a CW structure with a single cell in dimensions 0, 1 and 2. Use it to calculate the homology.
- (2) The non-orientable surface of genus g is the g-fold connected sum $\#_g \mathbb{R}P^2$. Describe a cell structure on this space and use it to calculate the homology.

Problem 3 (3pt). Prove that the isomorphism between cellular and singular homology is natural in the following sense. Let $f: X \to Y$ be a map of CW complexes. The map f is *cellular* if it has the property that $f(X^n) \subseteq Y^n$ for each n. Prove that if f is cellular then it induces a homomorphism between cellular chain complexes of X and Y, and that the induced map on cellular homology corresponds to the usual induce map on singular homology, under the isomorphism $\dot{H}_* \cong H^{CW}_*.$

Problem 4 (2pt). Let I = [0,1] and let $A = \{\frac{1}{n} \mid n = 1, 2, ...\} \cup \{0\}$. Let X be the CW complex with one 0-cell, and a 1-cell for each positive integer n. All the attaching maps are, necessarily, constant.

- (1) Show that there is a continuous bijection $f: X \to I/A$.
- (2) Show that the map f is not a homeomorphism. Suggestion: find a closed subset of X whose image in I/A is not closed.

Remark: The point of the exercise is to show that the obvious attempt to put a CW structure on I/A fails. It is possible to show that I/A does not have a CW structure.

Problem 5 (Extra credit 2pt). Let *I* and *A* be as in the previous exercise. For each positive integer *n* there is an obvious quotient map $I/A \rightarrow [\frac{1}{n+1}, \frac{1}{n}]/{\{\frac{1}{n+1}, \frac{1}{n}\}}$. In homology, it induces a homomorphism $H_1(I/A) \to \mathbb{Z}$ for each n. Taken together, they give a homomorphism

$$H_1(I/A) \to \prod_{n=1}^{\infty} \mathbb{Z}.$$

Note that the target of this homomorphism is an uncountable group.

- (1) Prove that the homomorphism that we just defined is surjective.
- (2) Conclude that $H_1(I, A)$ is not isomorphic to $H_1(I/A)$.