Homological algebra and algebraic topology Problem set 14

due: Monday Jan 11 in class.

Problem 1 (3pt). Identify S^{2n+1} with the space

$$\{(z_0,\ldots,z_n)\in\mathbb{C}^{n+1}\mid |z_0|^2+\cdots+|z_n|^2=1\}.$$

I.e., the unit sphere in \mathbb{C}^{n+1} . Let S^1 be the group of unit complex numbers. It acts on S^{2n+1} by coordinatewise multiplication. The complex projective space $\mathbb{C}P^n$ is the quotient space of this action.

- (1) Show that $\mathbb{C}P^n$ has a CW structure with a single cell in dimension 2i, for i = 0, 1, ..., n.
- (2) Use the cell structure to describe the cellular chain complex and the homology of CPⁿ.

Problem 2 (2pt). Calculate the homology of $\mathbb{R}P^n$ with coefficients in $\mathbb{Z}/2$ and in \mathbb{Z}/p , where *p* is an odd prime.

Problem 3 (2pt). Suppose that $A \subset S^n$ is a subspace homeomorphic to $S^k \vee S^l$. Prove that the homology of $S^n \setminus A$ is isomorphic to the homology of $S^{n-k-1} \vee S^{n-l-1}$.

Problem 4 (3pt). Let *X* be a topological space. Let $X_1 \subset X_2 \subset \cdots$ be a sequence of subsets with the following properties

(1) $X = \bigcup_{n=1}^{\infty} X_n$.

(2) Every compact subspace A of X is contained in X_n for some finite n. Prove the following

- (1) Every element of $H_i(X)$ is in the image of $H_i(X_n)$ for some finite *n*.
- (2) If an element $u \in H_i(X_1)$ maps to zero in $H_i(X)$, then it maps to zero in $H_i(X_n)$ for some finite *n*.