Homological algebra and algebraic topology Problem set 14

due: Monday Jan 11 in class.

Problem 1 (3pt). Identify $S^{2 n+1}$ with the space

$$
\left\{\left.\left(z_{0}, \ldots, z_{n}\right) \in \mathbb{C}^{n+1}| | z_{0}\right|^{2}+\cdots+\left|z_{n}\right|^{2}=1\right\}
$$

I.e., the unit sphere in \mathbb{C}^{n+1}. Let S^{1} be the group of unit complex numbers. It acts on $S^{2 n+1}$ by coordinatewise multiplication. The complex projective space $\mathbb{C} P^{n}$ is the quotient space of this action.
(1) Show that $\mathbb{C} P^{n}$ has a CW structure with a single cell in dimension $2 i$, for $i=0,1, \ldots, n$.
(2) Use the cell structure to describe the cellular chain complex and the homology of $\mathbb{C} P^{n}$.

Problem 2 (2pt). Calculate the homology of $\mathbb{R} P^{n}$ with coefficients in $\mathbb{Z} / 2$ and in \mathbb{Z} / p, where p is an odd prime.
Problem 3 (2pt). Suppose that $A \subset S^{n}$ is a subspace homeomorphic to $S^{k} \vee S^{l}$. Prove that the homology of $S^{n} \backslash A$ is isomorphic to the homology of $S^{n-k-1} \vee$ S^{n-l-1}.
Problem 4 (3pt). Let X be a topological space. Let $X_{1} \subset X_{2} \subset \cdots$ be a sequence of subsets with the following properties
(1) $X=\bigcup_{n=1}^{\infty} X_{n}$.
(2) Every compact subspace A of X is contained in X_{n} for some finite n.

Prove the following
(1) Every element of $H_{i}(X)$ is in the image of $H_{i}\left(X_{n}\right)$ for some finite n.
(2) If an element $u \in H_{i}\left(X_{1}\right)$ maps to zero in $H_{i}(X)$, then it maps to zero in $H_{i}\left(X_{n}\right)$ for some finite n.

