Homological algebra and algebraic topology Problem set 2

due: Tuesday Sept 14 in class.

Problem 1 (3pt). Assume that the following diagram of abelian groups has exact rows and columns. Can you determine the missing entries and maps? Give short reasonings.

Problem $2(4 \mathrm{pt})$. Let C_{\bullet} be a chain complex and denote by $C_{\bullet} / 2 C_{\bullet}$ the chain complex which in degree n is the quotient groups $C_{n} / 2 C_{n}$. Consider the sequence

$$
0 \rightarrow C \bullet \stackrel{2}{\rightarrow} C \bullet \rightarrow C \bullet / 2 C_{\bullet} \rightarrow 0
$$

(1) Show that this sequence is exact if all C_{n} are free abelian groups.
(2) Give a (preferably small) example of such a C_{\bullet} that has a nontrivial connecting homomorphism $\delta_{n}: H_{n+1}\left(C_{\bullet} / 2 C_{\bullet}\right) \rightarrow H_{n}\left(C_{\bullet}\right)$.
Problem 3 (3pt). Let \mathcal{C} be a category. Denote by $\operatorname{Ar}(\mathcal{C})$ the following category: an object in $\operatorname{Ar}(\mathcal{C})$ is a morphism $X_{1} \rightarrow X_{2}$ in \mathcal{C}. A morphism in $\operatorname{Ar}(\mathcal{C})$ from $X_{1} \rightarrow X_{2}$ to $Y_{1} \rightarrow Y_{2}$ is a commutative diagram

(1) Show that $\operatorname{Ar}(\mathcal{C})$ is indeed a category.
(2) Show that $F: \operatorname{Ar}(\mathrm{Ab}) \rightarrow \operatorname{Ar}(\mathrm{Ab})$ with $F\left(X_{1} \xrightarrow{f} X_{2}\right)=\left(\operatorname{ker}(f) \hookrightarrow X_{1}\right)$ defines a functor.

