Homological algebra and algebraic topology Problem set 3

due: Tuesday Sept 21 in class.

Problem 1 (3pt). An **equivalence of categories** is a pair of functors $F : C \to D$, $G : D \to C$ together with natural isomorphisms $F \circ G \to id_D$, $G \circ F \to id_C$.

Show that an equivalence of categories sends products to products and coproducts to coproducts. That is, if X_i are a family of objects in C with coproduct X then F(X) is the coproduct of $F(X_i)$ in D, and similarly for products.

Problem 2 (2pt). Let *X* be a partially ordered set and denote by \mathcal{X} the associated category with $ob(\mathcal{X}) = X$ and

$$\operatorname{Hom}_{\mathcal{X}}(x,y) = \begin{cases} \{*\}; & x \leq y \\ \emptyset; & \text{otherwise} \end{cases}$$

Is it generally true that all pairs of objects x, y have a product (coproduct) in \mathcal{X} ? How can you describe such a product (coproduct) in more familiar terms?

Problem 3 (3pt). Let R^n denote the direct sum of *n* copies of a ring *R*, considered as a left or right *R*-module. Show that

$$R^n \otimes_R R^m \cong R^{mn}.$$

Problem 4 (2pt). Show the following isomorphisms of abelian groups:

(1) $\mathbf{Q} \otimes_{\mathbf{Z}} \mathbf{Q} \cong \mathbf{Q}$.

(2) $\operatorname{Hom}_{\mathbf{Z}}(\mathbf{Q},\mathbf{Q})\cong\mathbf{Q}.$

Here $\operatorname{Hom}_{\mathbf{Z}}$ is a shorthand for $\operatorname{Hom}_{\operatorname{Mod}_{\mathbf{Z}}}$, i.e. homomorphisms of abelian groups.