Homological algebra and algebraic topology Problem set 3

due: Tuesday Sept 21 in class.

Problem 1 (3pt). An equivalence of categories is a pair of functors $F: \mathcal{C} \rightarrow \mathcal{D}$, $G: \mathcal{D} \rightarrow \mathcal{C}$ together with natural isomorphisms $F \circ G \rightarrow \mathrm{id}_{\mathcal{D}}, G \circ F \rightarrow \mathrm{id}_{\mathcal{C}}$.

Show that an equivalence of categories sends products to products and coproducts to coproducts. That is, if X_{i} are a family of objects in \mathcal{C} with coproduct X then $F(X)$ is the coproduct of $F\left(X_{i}\right)$ in \mathcal{D}, and similarly for products.

Problem $2(2 \mathrm{pt})$. Let X be a partially ordered set and denote by \mathcal{X} the associated category with $\operatorname{ob}(\mathcal{X})=X$ and

$$
\operatorname{Hom}_{\mathcal{X}}(x, y)= \begin{cases}\{*\} ; & x \leq y \\ \emptyset ; & \text { otherwise }\end{cases}
$$

Is it generally true that all pairs of objects x, y have a product (coproduct) in \mathcal{X} ? How can you describe such a product (coproduct) in more familiar terms?

Problem 3 (3pt). Let R^{n} denote the direct sum of n copies of a ring R, considered as a left or right R-module. Show that

$$
R^{n} \otimes_{R} R^{m} \cong R^{m n}
$$

Problem 4 (2pt). Show the following isomorphisms of abelian groups:
(1) $\mathbf{Q} \otimes_{\mathbf{Z}} \mathbf{Q} \cong \mathbf{Q}$.
(2) $\operatorname{Hom}_{\mathbf{Z}}(\mathbf{Q}, \mathbf{Q}) \cong \mathbf{Q}$.

Here $\operatorname{Hom}_{\mathbf{Z}}$ is a shorthand for $\operatorname{Hom}_{\mathrm{Mod}_{\mathbf{Z}}}$, i.e. homomorphisms of abelian groups.

