Homological algebra and algebraic topology Problem set 5

due: Monday October 5 in class.

Problem 1 (3pt). Let R be the polynomial ring $\mathbf{Q}[x, y]$. Construct free resolutions of the following *R*-modules:

- (1) $M = \mathbf{Q}$ with *R*-action $\mathbf{Q}[x, y] \times \mathbf{Q} \to \mathbf{Q}$ given by x.a = 0 = y.a for all $a \in \mathbf{Q}$.
- (2) The ideal $(x, y) \subset R$.

Problem 2 (2pt). Let $R = \mathbb{Z}[x]$ and define a covariant functor $F: \operatorname{Mod}_R \to \operatorname{Ab}$ by $F(M) = \{x.m \mid m \in M\} \subseteq M.$

On maps $f: M \to N$, we define $F(f): F(M) \to F(N)$ by $F(f) = f|_{F(M)}$. Verify that this is actually a functor. Is *F* left/right exact?

Problem 3 (3pt). Let $0 \to M' \xrightarrow{i} M \xrightarrow{p} M'' \to 0$ be a short exact sequence of *R*modules and let $P'_{\bullet} \to M', P''_{\bullet} \to M''$ be projective resolutions. Show that there is a projective resolution $P_{\bullet} \to M$ with $P_n = P'_n \oplus P''_n$ for all $n \ge 0$ such that the diagram

.

commutes and has exact rows and columns, where $\iota_1 \colon P'_n \to P'_n \oplus P''_n$ denotes the inclusion into the first summand and $\pi_2 \colon P'_n \oplus P''_n \to P''_n$ the projection onto the second summand.

Hint: the middle vertical maps are *not* of the form $(x, y) \mapsto (\partial' x, \partial'' y)!$

Problem 4 (2pt). Let *R* be a ring and $F: \operatorname{Mod}_R \to \operatorname{Ab}$ a right exact functor. Using the result of Problem 3 and the homology long exact sequence, show that there is a long exact sequence

$$\cdots \to (L_2F)(M) \xrightarrow{L_2F(p)} (L_2F)(M'') \to (L_1F)(M')$$
$$\xrightarrow{L_1F(i)} (L_1F)(M) \xrightarrow{L_1F(p)} L_1F(M'') \to F(M') \xrightarrow{F(i)} F(M) \xrightarrow{F(p)} F(M'') \to 0.$$