Homological algebra and algebraic topology Problem set 5

due: Monday October 5 in class.

Problem 1 (3pt). Let R be the polynomial ring $\mathbf{Q}[x, y]$. Construct free resolutions of the following R-modules:
(1) $M=\mathbf{Q}$ with R-action $\mathbf{Q}[x, y] \times \mathbf{Q} \rightarrow \mathbf{Q}$ given by $x . a=0=y . a$ for all $a \in \mathbf{Q}$.
(2) The ideal $(x, y) \subset R$.

Problem 2 (2pt). Let $R=\mathbf{Z}[x]$ and define a covariant functor $F: \operatorname{Mod}_{R} \rightarrow \mathrm{Ab}$ by

$$
F(M)=\{x . m \mid m \in M\} \subseteq M
$$

On maps $f: M \rightarrow N$, we define $F(f): F(M) \rightarrow F(N)$ by $F(f)=\left.f\right|_{F(M)}$. Verify that this is actually a functor. Is F left/right exact?

Problem 3 (3pt). Let $0 \rightarrow M^{\prime} \xrightarrow{i} M \xrightarrow{p} M^{\prime \prime} \rightarrow 0$ be a short exact sequence of R modules and let $P_{\bullet}^{\prime} \rightarrow M^{\prime}, P_{\bullet}^{\prime \prime} \rightarrow M^{\prime \prime}$ be projective resolutions. Show that there is a projective resolution $P_{\bullet} \rightarrow M$ with $P_{n}=P_{n}^{\prime} \oplus P_{n}^{\prime \prime}$ for all $n \geq 0$ such that the diagram

commutes and has exact rows and columns, where $\iota_{1}: P_{n}^{\prime} \rightarrow P_{n}^{\prime} \oplus P_{n}^{\prime \prime}$ denotes the inclusion into the first summand and $\pi_{2}: P_{n}^{\prime} \oplus P_{n}^{\prime \prime} \rightarrow P_{n}^{\prime \prime}$ the projection onto the second summand.

Hint: the middle vertical maps are not of the form $(x, y) \mapsto\left(\partial^{\prime} x, \partial^{\prime \prime} y\right)$!
Problem 4 (2pt). Let R be a ring and $F: \operatorname{Mod}_{R} \rightarrow \mathrm{Ab}$ a right exact functor. Using the result of Problem 3 and the homology long exact sequence, show that there is a long exact sequence

$$
\begin{aligned}
& \cdots \rightarrow\left(L_{2} F\right)(M) \xrightarrow{L_{2} F(p)}\left(L_{2} F\right)\left(M^{\prime \prime}\right) \rightarrow\left(L_{1} F\right)\left(M^{\prime}\right) \\
& \xrightarrow{L_{1} F(i)}\left(L_{1} F\right)(M) \xrightarrow{L_{1} F(p)} L_{1} F\left(M^{\prime \prime}\right) \rightarrow F\left(M^{\prime}\right) \xrightarrow{F(i)} F(M) \xrightarrow{F(p)} F\left(M^{\prime \prime}\right) \rightarrow 0 .
\end{aligned}
$$

