Homological algebra and algebraic topology Problem set 6

due: Monday Oct 19.

Problem 1 (3pt). Let $R = \mathbb{Z}/8\mathbb{Z}$ and $M = R/(4) \cong \mathbb{Z}/4\mathbb{Z}$. Compute $\operatorname{Tor}_n^R(M, M)$.

Problem 2 (2pt+2pt). Let k be a field, $R = k[x_1, x_2]$, and $M = R/(x_1, x_2) \cong k$. Compute $\operatorname{Ext}_{R}^{n}(M, M)$. Bonus: compute the same for $R = k[x_1, ..., x_n]$, $M = R/(x_1, ..., x_n)$.

Problem 3 (3pt). Show that the following spaces are homotopy equivalent:

(1) $\mathbf{D}^n = \{x \in \mathbf{R}^n \mid |x| \le 1\}$ and a point;

(2) $\mathbf{R}^n - \{0\}$ and $\mathbf{S}^{n-1} = \{x \in \mathbf{R}^n \mid |x| = 1\};$ (3) The complement of $\mathbf{S}^1 = \{x \in \mathbf{R}^4 \mid |x| = 1, x_3 = x_4 = 0\} \subset \mathbf{S}^3$ and \mathbf{S}^1 .

Problem 4 (2pt). Show that if $f, g: X \to Y$ are homotopic maps then their mapping cones C_f , C_g are homotopy equivalent.