Homological algebra and algebraic topology Problem set 6

due: Monday Oct 19.

Problem 1 (3pt). Let $R=\mathbf{Z} / 8 \mathbf{Z}$ and $M=R /(4) \cong \mathbf{Z} / 4 \mathbf{Z}$. Compute $\operatorname{Tor}_{n}^{R}(M, M)$.

Problem 2 ($2 \mathrm{pt}+2 \mathrm{pt}$). Let k be a field, $R=k\left[x_{1}, x_{2}\right]$, and $M=R /\left(x_{1}, x_{2}\right) \cong k$. Compute $\operatorname{Ext}_{R}^{n}(M, M)$.

Bonus: compute the same for $R=k\left[x_{1}, \ldots, x_{n}\right], M=R /\left(x_{1}, \ldots, x_{n}\right)$.

Problem 3 (3pt). Show that the following spaces are homotopy equivalent:
(1) $\mathbf{D}^{n}=\left\{x \in \mathbf{R}^{n}| | x \mid \leq 1\right\}$ and a point;
(2) $\mathbf{R}^{n}-\{0\}$ and $\mathbf{S}^{n-1}=\left\{x \in \mathbf{R}^{n}| | x \mid=1\right\}$;
(3) The complement of $\mathbf{S}^{1}=\left\{x \in \mathbf{R}^{4}| | x \mid=1, x_{3}=x_{4}=0\right\} \subset \mathbf{S}^{3}$ and \mathbf{S}^{1}.

Problem $4(2 \mathrm{pt})$. Show that if $f, g: X \rightarrow Y$ are homotopic maps then their mapping cones C_{f}, C_{g} are homotopy equivalent.

