Homological algebra and algebraic topology Problem set 7

due: Monday Nov 2 in class.

Problem $1(3 \mathrm{pt})$. This exercise is a reading assignment, aimed at understanding the difference between reduced and unreduced cones and suspensions and, for an inclusion $i: A \hookrightarrow X$, the difference between its mapping cone C_{i} and the simpleminded quotient X / A. If i is well-behaved (a "cofibration"), these are homotopy equivalent. Read and understand the basics of cofibrations; you can choose from:
(1) Bredon, Chapter VII. 1
(2) tom Dieck, Chapter 5.1 including Problems 5-8
(3) J.P. May, A concise course in algebraic topology, Chapter 6 or find your own reference.

To show you can work with these notions, give one example each (not from the literature) of
(1) a cofibration;
(2) a continuous inclusion $A \hookrightarrow X$ that is not a cofibration.

Give proofs, of course, but you don't need to reproduce what you've read.

Problem 2 (2pt). Using the Eilenberg-Steenrod axioms, show the following for an arbitrary space X :

$$
H_{n+1}\left(X \times \mathbf{S}^{1}\right) \cong H_{n}(X) \oplus H_{n+1}(X)
$$

Problem 3 (2pt). Let X be the subspace of \mathbf{R}^{3} which is the union of the unit 2sphere S, the plane disk D which has boundary S, and the straight line from the north pole to the south pole of S. Compute the homology of X, using MayerVietoris sequences and/or long exact sequences.
Problem 4 (3pt). Use Brouwer's fixed point theorem to show that any square matrix all of whose entries are positive real numbers has a positive eigenvalue with a corresponding eigenvector consisting of non-negative entries.

