Homological algebra and algebraic topology Problem set 8

due: Monday Nov 9, 1 pm.

Problem 1 (2pt). Consider the subspaces

$$
\begin{gathered}
\Delta_{t}^{n+1}=\left\{\left(t_{0}, \ldots, t_{n+1}\right) \mid 0 \leq t_{i} \leq 1, \quad t_{0}+\cdots+t_{n+1}=1\right\} \subset \mathbf{R}^{n+2} \\
\Delta_{x}^{n+1}=\left\{\left(x_{0}, \ldots, x_{n}\right) \mid 0 \leq x_{0} \leq \cdots \leq x_{n} \leq 1\right\} \subset \mathbf{R}^{n+1}
\end{gathered}
$$

Verify that the change of coordinates $x_{i}=t_{0}+\cdots+t_{i}$, for $i=0,1, \ldots, n$, defines a homeomorphism $\Delta_{t}^{n+1} \rightarrow \Delta_{x}^{n+1}$.

In the next two problems we will use the x-coordinates for Δ^{n+1}.
Problem 2 (3pt). Consider the maps $\eta_{0}, \ldots, \eta_{n}: \Delta^{n+1} \rightarrow \Delta^{n} \times I$ defined by

$$
\eta_{i}\left(x_{0}, \ldots, x_{n}\right)=\left(\left(x_{0}, \ldots, \widehat{x}_{i}, \ldots, x_{n}\right), x_{i}\right)
$$

Prove that the simplices $\Delta_{i}^{n+1}=\operatorname{im}\left(\eta_{i}\right)$ provide a triangulation of $\Delta^{n} \times I$, i.e.,

$$
\Delta^{n} \times I=\bigcup_{i=0}^{n} \Delta_{i}^{n+1}
$$

and the intersection of Δ_{i}^{n+1} and Δ_{j}^{n+1} is either empty or a common face of both. Draw a picture for $n=2$.

Problem 3 (2pt). In this problem we will fill in the missing step in the proof of homotopy invariance for singular homology. Given a homotopy $h: X \times I \rightarrow Y$ between f and g, consider the maps $h_{0}, \ldots, h_{n}: S_{n} X \rightarrow S_{n+1} Y$ defined by

$$
h_{i}(\sigma)\left(x_{0}, \ldots, x_{n}\right)=h\left(\sigma\left(x_{0}, \ldots, \widehat{x}_{i}, \ldots, x_{n}\right), x_{i}\right)
$$

Verify the identities

$$
\begin{aligned}
d_{0} h_{0} & =f, \quad d_{n+1} h_{n}=g \\
d_{i} h_{j} & =h_{j-1} d_{i} \quad(i<j) \\
d_{j} h_{j} & =d_{j} h_{j-1} \\
d_{i} h_{j} & =h_{j} d_{i-1} \quad(i>j+1)
\end{aligned}
$$

(Hint: Begin by figuring out formulas for the face maps d_{i} in terms of the x coordinates for Δ^{n+1}.)
Problem 4 (3pt). Let $\sigma: \Delta^{1} \rightarrow X$ be a singular 1-simplex of X. Define a new 1-simplex $\bar{\sigma}$ by the formula $\bar{\sigma}\left(x_{0}, x_{1}\right)=\sigma\left(x_{1}, x_{0}\right)$ (we have reverted to the standard coordinates for Δ^{1}). Prove that $\sigma+\bar{\sigma}$ is a boundary (i.e., in the image of the boundary homomorphism $\partial_{2}: C_{2}(X) \rightarrow C_{1}(X)$).

